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Physics Motivation: Neutral B(g)-meson oscillations
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Physics Motivation: Neutral B(g)-meson oscillations
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knowledge of the initial state (B! or BY)
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Inclusive Flavour Tagging

Oscillation measurements require
knowledge of the initial state (B! or BY)

Flavour Tagging:
Algorithms exploiting specific processes

Event 58049711
Run 153460
Wed, 03 Jun 2015 12:05:39

Inclusive Flavour Tagging:
Simultaneous analysis of all tracks with DeepSet NN
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Inclusive Flavour Tagging:
Simultaneous analysis of all tracks with DeepSet NN
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Our work: Interaction awareness and domain invariance

Zaheer et.al., Deep Sets, arXiv:1703.06114]
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Implementing domain-adversarial training
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[Lee et al., Set Transformer: A Framework for Attention-based [Ganin et.al., Domain-Adversarial Training of
Permutation-Invariant Neural Networks, arXiv:1810.00825] Neural Networks, arXiv:1505.07818]
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Our work: Interaction awareness and domain invariance

Studying the SetTransformer architecture
Significant improvement
in toy-based studies

Interaction-Aware and Domain-Invariant
Representation Learning for
Inclusive Flavour Tagging
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» Matter-antimatter oscillations in neutral mesons (quark-
antiquark pairs) due to quark transitions enabled by
weak interaction in the SM of particle physics

» Quark transition probabilities are fundamental
parameters of the SM, constraining the SM and giving
access to CP violation (thus matter-antimatter
imbalance in the universe)
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» Measuring decay rates of neutral mesons requires
knowledge of the flavour (matter/antimatter state) at
the time of its production

» At collider experiments, production flavour not a-priori
known and, due to oscillation, not inferable from decay
products

» ML-based flavour tagging used to infer production
flavour from particles produced in association to signal

(Inclusive) Flavour Tagging

» Flavour tagging to determine the production flavour of
neutral B mesons

> Different algorithms exploit the (pair)production
mechanism

> E.g. at LHCb, tag decision based on the charge of a
selected, associated track. Additional MVA used to
estimate mistag probability w
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» Efficiency introduced by selections, oscillation
amplitudes diluted by mistagged events — statistical
power of flavour-tagged amplitudes A reduced by

tagging power £ = £, (1 =2w)%, Oy ~ /&g N

» Recent development: Inclusive tagging, simultaneous
evaluation of all O(40) reconstructed tracks based on a

DeepSet[2]:
1@ =p( o).

i
with ¢(x) and p(x) being row-wise feed-forward NNs
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Idea

> Individual set elements agnostic to each other in the
DeepSet model

» Potential gain by modelling interactions between
subsets of tracks due to redundant or collectively
enhanced information (e.g, cloned tracks or common
mother particle decay)

» SetTransformer architecture[3], based on multi-head
attention allows for interactions among set elements

> Important properties:
>~ Permutation invariant
~Universal approximator of permutation invariant

functions

o

More details in the corresponding paper[3] =

Toy-based Studies

» Training and testing on LHCb-like toy samples with
0(40) tracks in forward direction:
- Tracks from decay chains on the opposite side
- Tracks from fragmentation from the same side
- Dominated by tracks from unrelated processes

» Mixture of unique and ambiguous track-charge to
B-flavour relations

> Trained DeepSet and SetTransformer with(out) NN-
based per-track predictions of track origin (SS vs 0S
vs unrelated) with optimised layer number and width

Model ‘ # pars__ Tagging Power
DeepSet 14k 9.81+£0.12%
+ rFF for preclassification 18k 10.14+0.12 %
SetTransformer 9k  11.20£0.12%

+ ISAB for preclassification| 35k  11.58+0.12 %

Encoder(X) = ISAB,,(ISAB, (X)) »Multi-attention block®
Decoder(Z) = iFF(SAB(PMA(2)) ). MAB(X. Y) = LayerNorm(H + FF(H),
H = LayerNorm(X + Multihead(X, ¥, Y)

[3]
e H

»Set-attention block* »Induced set-attention block“

PMA(Z) = MAB(S, FF(Z)

SAB(X) = MAB(X, X) ISAB,,(X, Y) = MAB(X, H),

H=MAB(,X)
Conclusion and Outlook

» Allowing for track interactions significantly improves
performance of an inclusive tagging approach in an
LHCb-like environment

» Performance gain even with smaller model

> Possible follow-up: GraphNNs to model track
interactions
- Significant gain in tagging power seen[4] by Belle II
»Could allow for explicitly modelling the combination

of four-momenta

» Small model wrt. ParticleTransformer[5] using multi-
head attention for jet tagging at CMS (2M parameters)

Domain-Adversarial Training for Flavour Tagging

Idea

» Representation of data by simulation known to be
limited (track multiplicities, kinematic spectrum,
particle identification responses and more)

» Training of FT algorithms usually relies on labelled
samples from simulation

> Higher tagging power of (inclusive) tagging algorithms

in simulation wrt. data

» Domain-adversarial training[6] to use domain (data or
simulation) invariant feature set for flavour prediction

» Additional NN head to predict the domain

» Feature extractor receives gradients from domain
classifier (inverted signs, 2 < 0) and label predictor

> Goal: Receive a domain-invariant feature set for label

predictor

» Domain classifier can be used for monitoring of
domain differences, even when gradients are scaled
tod=0

More details in the corresponding paper[6] —
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First Toy-based Studies

» Generating samples to represent different domains:
»,Simulation-like* with smaller multiplicity and
harder momenta; labelled flavour for training
- ,Data-like* with higher multiplicity and softer
momenta; flavour masked for training
» Construct DeepSet model with two separate NNs
after pooling for domain and flavour prediction

» First check: predict only the domain — achieved
accuracy of & 90% — domains are distinguishable
» Baseline, train flavour tagger with domain classifier as
silent observer (1 = 0):
»Domain prediction: 57% accuracy — features
relevant for tagging show mild domain dependency
- Tagging power of 713 + 012% (4.95 + 013%) in the
simulation(data)-like sample
» Domain-adversarial training (A=-1):
»Domain accuracy dropped to 50% — extracted
feature seemingly domain invariant
- Tagging power of 716 * 012% (5.09 * 0.13%) in the
simulation(data)-like sample —no significant change
» Probing the domain invariance: separate training of
domain classifier based on extracted feature set
yields accuracy of 68%

Preliminary Conclusion and Outlook
» Observed domain invariance not yet robust
» Challenges from concurrent optimisation of losses

» Investigating training with multiple phases or
optimisation of scale factors to handle losses

» Studying semi-supervised approach for opposite side
by making use of charged B-meson decays
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Implementing domain-adversarial training
Different challenges encountered
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