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Astrophysical Variability
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Introduction

Astrophysical sources exhibit variability across diverse timescales,
flecting plexity and li ity. Disentangling the
underlying causal processes driving variability, often in-tandem is
challenging. We ill how g | causal dels, based on
information theory, can clarify these dynamics and provide new
feature-sets for modelling in both solar and extragalactic contexts.

Drivers of Solar Wind and Flare Forecast
Solar wind and flares are complex, non-linear dynamical systems
Together they impact space weather, necessitating timely forecasts
« Information theory provides non-linear measures of association :
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using Shapley values for RNN mode vs causal

Shannon entropy (H), (Conditional) Mutual & Interaction Information (1)  information strengtn using graphical causal models. The latter caplures synergisiic effects (60%) promoting scalar B
to a higher rank. We can use this to design a feature-set including those capturing synergy between observables.

I(z;y) = H(z) — H(z|y)(= 0 independence) I(z;y;2) = I(z;y) — I(z;ylz) (1)

« Hierarchical information decomposition captures causal relations
amongst variables in non-linear, dynamical systems —
this includes joint/synergistic influence of multiple inputs on output —
attribution to synergistic terms missed otherwise
Solar Wind: Satellite Observatories (STEREO+OMNI) measures
wind speeds - forecast driven by solar activity + orbital variables
namely latitudinal offset | lead time.
Significant mixing of influence (red term)
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Inputs/drivers - Solar
Activity + Orbital variables

° Bt

A WWVWWWA,

Fig.1 shows the synergistic or joint influence of latitudinal
offset and lead time (orbital) on the forecast error is 20%
of their total influence (individual + synergistic).
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Outputitarget - Forecast Error

Solar Flares: Solar-flare index (Fl) - total energy emitted in a given time
(Kleczek, 1952). Indices Kp, Ap, Dst (Disturbance Storm Time) capture
geomagnetic activity along with scalar magnetic field, Bscal.

Applying Recurrent Neural Network (RNN) and Causal Information
Graphs, we get features importance for forecast model with Kernel
Shapley values and total information (direct+synergistic eqn.(2))

« Causal graphs (fig 2) reveal significant synergy between Ap/Dst and
Bscal. Large part of influence of Ap/Dst is shared/mediated by Bscal.
“Feature-set Importance” (synergistic combination) missed by traditional
networks and metrics
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+ Astrophysical Variability: Sources like Active Galactic Nuclei
(AGN), show variability across time-scales (minutes to years).

« Time-lags from (a) reprocessing from the torus and (b) inward
propagating accretion disk fluctuations (scenario sketch in fig.3)

« UV and X-ray: We investigate timescales of 0.1 to few days with
multiwavelength light curves of AGN NGC 4593

+ Mutual Information estimates detect UV leading X-rays by ~1
day—consistent with (b) and missed by traditional methods.
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Fig:3 shows A simplified AGN schematic shows time lags between emissions from the black hole, accretion disk,
dusty torus, and broad/narrow line regions (jet omitted for clarity). Torus reprocessing and inward-propagating
fluctuations produce opposite lag directions. Both lags directions y

Conclusions: Hierarchical information graphs provide

+ Causal information including synergistic component of influence
due to multiple variables

New comprehensive, explainable ‘feature-set importance” vital
for both physics and space weather forecasting with ML

« Accurate time-lags for non-linear relationships between
observables and underlying non-linear physical mechanisms
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Conclusions:
Hierarchical information graphs provide

» Standalone inference or diagnostics for ML/DL

« Causal information including synergistic influence

due to multiple variables

* New comprehensive, explainable “feature-set

importance” vital for both physics and space
weather forecasting with ML

 Accurate time-lags for non-linearity
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