

Emulating CO Line Radiative Transfer with Deep Learning

 What is Radiative Transfer Equation? RTE governs the radiation propagation through a medium along line of sight. Emissivity

$$\hat{\boldsymbol{n}} \cdot \nabla I_{\nu}(\boldsymbol{x}, \hat{\boldsymbol{n}}) = \eta_{\nu}(\boldsymbol{x}) - \chi_{\nu}(\boldsymbol{x})I_{\nu}(\boldsymbol{x}, \hat{\boldsymbol{n}})$$

Change of intensity

- What is the bottleneck? Fitting models to observations requires repeated RTE computations – CPU-bound and slow across large parameter spaces.
- What is the solution? COEmuNet deep learning surrogate models for fast, accurate simulation.

- Absorption

Intensity [W m⁻² sr⁻¹ HZ⁻¹]

10^{14} 10^{13} 10^{12} z 10^{11} 10^{10}

COEmuNet Achievements

• High accuracy:

7% relative error

Massive speed up:

1000x speed up on GPU

• Implication:

Enables integration into real-time

observational pipelines.

• Future plan:

Physics-informed ML to improve model generalizability

2