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The problem

• The acquisition process is given with

• Acquisition is done through an interferometer

• The solution is ill-conditioned

• We dont want to rely on forward modeling

(slow, contains residual mixing at edges – nondiagonal
elements not considered)

• We dont want to rely on Deep Learning – instant results, no 
interpretability, difficult uncertainty propagation

• We will go a step further from Physics-Informed Neural
Networks (PINNs)
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The solution

Interpretable, physically guided solution with uncertainty propagation –
providing results in one forward pass

Our attempt

Find the analytical solution by breaking the problem 
into a chain of operators, and approaching them
individually.

Use NN layers to imitate the approximations:

The neural network is informed through the
architecture that approximates the inverse – not through
the loss!



For a problem defined with multiple operations

we break its inverse into physically interpretable components

and use the infrastructure of NN to imitate each.
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Results

• Interpretable: Weight == physical parameters

• Fast: one forward pass (~ms)

• Data-efficient: training needs only dirty vs clean maps, no sky priors

• Modular: swap, retrain, or Bayesian-wrap layers independently
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++ add Pyro on any trainable parameter --> directly infer uncertainty on 
real physical properties!

Bolometer decay

Detector transmission

Projection

SOLUTION IS CONSTRAINED BY FUNCTIONS, NOT BY THE LOSS


	Slide 1: Physics-guided Machine Learning Methods in QUBIC
	Slide 2
	Slide 3

