Particle Identification with MLPs and PINNs Using HADES Data

M. Kohls and S. Spies

- Fixed target experiment @ GSI, Darmstadt, Germany
- Magnet spectrometer with electromagnetic calorimeter
- Heavy ion experiments (Ag+Ag, Au+Au)
 - Average particle multiplicities per event ~100
 - Complex systems with kinematically overlapping channels
 - Identification limited to measured final state properties and their resolution
- Elementary reactions (p+p, π +p)
 - Average particle multiplicities ~3
 - Kinematically well-defined channels
 - Identification via measured final state properties and kinematic

Current Methods

• Decaying (off-vertex) particles [1]:

• "Stable" charged particles:

- MLP (FFNN) training on geometric variables and kinematic constraints
 - Simulation of decaying particles as signal
 - "Mixed Event" technique for data-driven combinatorial background emulation

• Currently user-defined criteria (heavy ion) combined with kinematic constraints (elementary)

PIDANN Setup

Domain-Adversarial Neural Network is composed of : 1) Encoder – uses raw input and maps it into feature-space 2) Classifier – builds on the Encoder's features to predict the label 3) Discriminator – compares similarity of simulation and data

Advantage:

Comparison of labeled simulation training data to real data

Suppress training on simulation artifacts (better real-world performance)

Physics-Informed NNs utilise a custom loss function, which penalises large deviations of properties of classified particles from theoretical values for particle hypothesis

MLPs for Off-Vertex Particles

Physics Information for Rare Particles

False Positive Rate

- Goal is identification of *K*⁺ in heavy-ion data (Ag+Ag at $\sqrt{s_{\rm NN}} = 2.55$ GeV), on average produced once every 100th event (protons and pions dominate selection region)
- Impact of physics information varies
 - MLPs seem mostly insensitive to physics information, relying more on simulated data for training
 - DANN performance increases significantly by adding physics information, appears to compensate for loss due to discrimination

- More detailed investigations to be performed regarding varying the input, the hyperparameters and the physics information
- Combination of PI DANN with subsequent classical cut-based analysis could potentially improve results

[1] DOI: 10.21248/gups.68651

• Input for DANN: Simulation (labelled) to Data (unlabelled) 50/50

• Training-Test-Split: 80/20, Sample-Weighting: Balanced

• Learning Rate: 1e-4 (Adam Optimizer), Training Epochs: 15, Classifier Metric: AUC

GSI Helmholtzzentrum für Schwerionenforschung GmbH