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Why Bother?

Research on quantification learning offers:

» Fast-paced improvements of methods

» Few limitations (e.g., no limitation on the number of observables)

» Comprehensive theoretical understanding

* Interdisciplinary community eager to explore new aspects

* Funding opportunities

<

>

Mirko Bunse

Unfolding is also known as Quantification Learning



Example Use Case: Ground-Based Gamma-Ray Observatories

\ % i charged particles

object under study

Earth



Example Use Case: Ground-Based Gamma-Ray Observatories

gamma ray
or charged particle

atmosphere

telescope =
R VEACT

& J

1 Fig: Bockermann et al., “Online Analysis of High-Volume Data Streams in Astroparticle Physics”, 2015



Example Use Case: Ground-Based Gamma-Ray Observatories

gamma ray
or charged particle

air shower
= secondary particles atmosphere

telescope = -
R VEACT

& J

1 Fig: Bockermann et al., “Online Analysis of High-Volume Data Streams in Astroparticle Physics”, 2015



Example Use Case: Ground-Based Gamma-Ray Observatories

gamma ray
or charged particle

air shower
= secondary particles atmosphere

Cherenkov light

telescope = -
R VEACT

& J

1 Fig: Bockermann et al., “Online Analysis of High-Volume Data Streams in Astroparticle Physics”, 2015



Example Use Case: Ground-Based Gamma-Ray Observatories

gamma ray
or charged particle

air shower
= secondary particles atmosphere

Cherenkov light

telescope S
R JEACT
~ J
b Preprocessing »

1 Fig: Bockermann et al., “Online Analysis of High-Volume Data Streams in Astroparticle Physics”, 2015




Example Use Case: Ground-Based Gamma-Ray Observatories

gamma ray
or charged particle

air shower
= secondary particles atmosphere

Cherenkov light

telescope g
b PreproceSSing »

1 Fig: Bockermann et al., “Online Analysis of High-Volume Data Streams in Astroparticle Physics”, 2015




Unfolding: the Reconstruction of Spectra '
4
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Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement ¢(z). 1010 ] MAGIC, JHEAP 2015
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2 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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Unfolding: the Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).

q(x) = /M(m | y)- p(y) dy
~—~ ——
measurement transfer  target

Approach: set up a linear system of equations
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and solve it by minimizing some loss, i.e.,

q = Mp where

p = argmin £(p; q,M)
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Use Ca
ses Everywhere: Count + Predict
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Three years into Keir Starmer's time as Labour leader,
only 22% of Britons, and 37% of Labour voters, say he
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Quantification

In Computer Science, unfolding-like problems are covered by Quantification Learning®-4.

3 Esuli et al., Learning to Quantify, 2023.
4 Forman, “Quantifying counts and costs via classification”, 2008, .
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Quantification '
o>
In Computer Science, unfolding-like problems are covered by Quantification Learning®-4.
Goal: count the frequency p(y), which S
quantifies how often class y occurs. +‘§/ 1\ —— MAGIC, JHEAP 2015
b - -+ Unfolding
- Pt
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3 Esuli et al., Learning to Quantify, 2023.
4 Forman, “Quantifying counts and costs via classification”, 2008, .
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Quantification
In Computer Science, unfolding-like problems are covered by Quantification Learning®-4.

Goal: count the frequency p(y), which

N
\~
quantifies how often class y occurs. +‘§/\ 1 —— MAGIC, JHEAP 2015
b - -+ Unfolding
o~ P1
qx) = E M(z | y)- p(y) dy Z 0
yey E
measurement ) transfer  target Lo
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Approach: solve q = Mp for p = 107
(just like beforel)
107 T T
10° 10*
Hence, unfolding = quantification. E / GV

unknown y € [1, 5]
= class label!

3 Esuli et al., Learning to Quantify, 2023.
4 Forman, “Quantifying counts and costs via classification”, 2008, .
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5 Learnings From
Quantification Research



15t Learning: Statistical Consistency '

o>
Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),

it would return the true class prevalences:

R (QX)) =Q(Y) ¥YQ:QX|Y)=PX|Y)

——

population for any Q with PPS
analogue
of h(B)

5 Blobel, “An unfolding method for high energy physics experiments”, 2002, .
® Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
7 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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R (QX)) =Q(Y) ¥YQ:QX|Y)=PX|Y)

——

population for any Q with PPS
analogue
of h(B)

» can also be defined for other types of data set shift
* not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN® / TRUEE (and others) are Fisher consistent®
2) DSEA & DSEA+ are not Fisher consistent” X
5 Blobel, “An unfolding method for high energy physics experiments”, 2002, .

® Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
7 Govert, “Fisher-Konsistenz fur Quantification-Algorithmen”, 2023.
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2"d earning: The Anatomy of Prediction Errors '
4
<

Prediction Error Bound:® describes the impact of and the interplay between causes of errors.

2k(2+\/210g%).(u p* 1 . 1 )
2 D IB|
N——

[nB)—p7||, <
2 A /)\2 Ptrn
prediction error representation ¢ shift volume D volume B

—_—

where

* h(B) is the solution of g = Mp
* k isaconstant sit. ||[¢p(z)|2 <k VzeX
* A2 is the second-smallest eigenvalue of some particular G

* § is the desired probability

8 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3" Learning: Improved Optimization Techniques '

o>
Algorithm Estimate Validity
RUNS® p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € RC

9 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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3" Learning: Improved Optimization Techniques '

b <g

Algorithm Estimate Validity

RUNS® p = argmin {(p; q,M) invalid: p ¢ AC—1 X
p € R¢

TRUEE® p = argmin £(p; q,M) invalid: p ¢ AC—1 X
p=>0

Constrained® p = argmin £(p; q,M) valid
p € AC-1

Soft-Max*° p = ol*), I =argmin £{(o(l); q,M) valid

1€RC—1

® Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .
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4th Learning: Methods Are Numerous '
o
Most methods are combinations of

» a data representation ¢: X - Z

» aloss function £: Zx Z - R

» an optimization algorithm

These components can be recombined to even more methods.

" Bella et al., “Quantification via Probability Estimators”, 2010, .
12 Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .
3 Bérner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .

14 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .
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Most methods are combinations of

» a data representation ¢: X - Z

github COm/ .
. mirkoby
+ aloss function £: Zx Z - R nse/qunfold

» an optimization algorithm

These components can be recombined to even more methods.

Representations: hard* & soft" classification, histograms'?, tree-based binnings', kernel means'™, ...

Loss Functions: least squares®", Hellinger distance'?, energy distance', Poisson likelihood?, ...

" Bella et al., “Quantification via Probability Estimators”, 2010, .
12 Gonzalez-Castro, Alaiz-Rodriguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .
3 Bérner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .

14 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,
2016, .
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5t Learning: Open Issues in Quantification Research

Complications of experimental physics:

» ordinality: y; <yiy1 Vi €Y (to be covered through regularization for ordinal plausibility

15 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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+ acceptance / class-conditional selection bias: Q(x € B |y;) # Qx€B|y;) Ji#J
» changing environment: Q(x,y) = ZeES Q(x,y,e)
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5t Learning: Open Issues in Quantification Research '
4
<

Complications of experimental physics:
- ordinality: y; <yi+1 Vi€ Y (to be covered through regularization for ordinal plausibility™)
* background: Q(x) = Q(x,92) + 25:1 Q(x,y) (PPS with a noise class®)
+ acceptance / class-conditional selection bias: Q(x € B |y;) # Qx€B|y;) Ji#J
» changing environment: Q(x,y) = ZeES Q(x,y,e)
» data-MC mismatches / concept shift: Q(x|y) # P(x|y) (in addition to PPS)

« inspect contributions of individual data items x € B to h(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

5 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Recap: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some
quantity y from a measurement ¢(z).

q(x) = /M(r | y)- p(y) dy
~—~ ——
measurement transfer  target

Approach: set up a linear system of equations

a4 =572 ,en 4@

and solve it by minimizing some loss, i.e.,

q = Mp where

p = argmin £(p; q,M)
peAC—l

Flux / (cm?s! GeV ')

&
.

S
|
I~}
!

10-13 4

¢

L ¢

AN —— MAGIC, JHEAP 2015
<+ Unfolding

107[4

T
10

E / GeV

unknown y € [1, 5]
= class label!

2 Fig.: Morik and Rhode, Machine Learning under Resource Constraints — Discovery in Physics, 2023
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Conclusion: 5 Learnings From Quantification '
o>
Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes
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Conclusion: 5 Learnings From Quantification '
o>
Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:
3) Contraints must be implemented, either explicitly or via soft-max
4) Many methods—or aspects thereof—have a potential for improving physics analyses

5) Physics applications motivate further developments in quantification research
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