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Why Bother?

Research on quantification learning offers:

• Fast-paced improvements of methods

• Few limitations (e.g., no limitation on the number of observables)

• Comprehensive theoretical understanding

• Interdisciplinary community eager to explore new aspects

• Funding opportunities
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Unfolding: the Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement q(x).

q(x)︸︷︷︸
measurement

=
∫

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: set up a linear system of equations

q = Mp where

{
q = 1

|B |
∑

x∈B φ(x)

Mi = 1
|Di|

∑
x∈Di

φ(x)

and solve it by minimizing some loss, i.e.,

p̂ = arg min
p ∈ ∆C−1

` (p; q, M)
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Use Cases Everywhere: Count + Predict
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Quantification

In Computer Science, unfolding-like problems are covered by Quantification Learning3,4.

Goal: count the frequency p(y), which
quantifies how often class y occurs.

q(x)︸︷︷︸
measurement

=
∑
y∈Y

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: solve q = Mp for p
(just like before!)

Hence, unfolding ≡ quantification.
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3 Esuli et al., Learning to Quantify, 2023.
4 Forman, “Quantifying counts and costs via classification”, 2008, .
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5 Learnings From

Quantification Research



1st Learning: Statistical Consistency

Definition (Fisher Consistency for Prior Probability Shift):

If a consistent quantifier had access to the entire population Q(X) (i.e., to “unlimited data”),

it would return the true class prevalences:

h′
(
Q(X)

)︸ ︷︷ ︸
population
analogue
of h(B)

= Q(Y ) ∀ Q : Q(X | Y ) = P(X | Y )︸ ︷︷ ︸
for any Q with PPS

• can also be defined for other types of data set shift

• not a sufficient but certainly a necessary criterion for quantifier selection

1) RUN5 / TRUEE (and others) are Fisher consistent6 3

2) DSEA & DSEA+ are not Fisher consistent7 7

5 Blobel, “An unfolding method for high energy physics experiments”, 2002, .
6 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
7 Gövert, “Fisher-Konsistenz für Quantification-Algorithmen”, 2023.
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2nd Learning: The Anatomy of Prediction Errors

Prediction Error Bound:8 describes the impact of and the interplay between causes of errors.

∥∥h(B) − p∗
∥∥

2︸ ︷︷ ︸
prediction error

≤
2k(2 +

√
2 log 2C

δ
)√

λ2︸ ︷︷ ︸
representation φ

·
( ∥∥ p∗

ptrn

∥∥
2︸ ︷︷ ︸

shift

·
1√
|D|︸ ︷︷ ︸

volume D

+
1√
|B|︸ ︷︷ ︸

volume B

)

where

• h(B) is the solution of q = Mp

• k is a constant s.t. ‖φ(x)‖2 ≤ k ∀ x ∈ X

• λ2 is the second-smallest eigenvalue of some particular G

• δ is the desired probability

8 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023, .
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3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN5 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

TRUEE9 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

Constrained10 p̂ = arg min
p ∈ ∆C−1

`(p; q, M) valid 3

Soft-Max10 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

9 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

Mirko Bunse Unfolding is also known as Quantification Learning 10



3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN5 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

TRUEE9 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

Constrained10 p̂ = arg min
p ∈ ∆C−1

`(p; q, M) valid 3

Soft-Max10 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

9 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

Mirko Bunse Unfolding is also known as Quantification Learning 10



3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN5 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

TRUEE9 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

Constrained10 p̂ = arg min
p ∈ ∆C−1

`(p; q, M) valid 3

Soft-Max10 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

9 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

Mirko Bunse Unfolding is also known as Quantification Learning 10



3rd Learning: Improved Optimization Techniques

Algorithm Estimate Validity

RUN5 p̂ = arg min
p ∈ RC

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

TRUEE9 p̂ = arg min
p ≥ 0

`(p; q, M) invalid: p̂ /∈ ∆C−1 7

Constrained10 p̂ = arg min
p ∈ ∆C−1

`(p; q, M) valid 3

Soft-Max10 p̂ = σ(l∗) , l∗ = arg min
l ∈ RC−1

`( σ(l) ; q, M) valid 3

9 Milke et al., “Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics”, 2013.
10 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022, .

Mirko Bunse Unfolding is also known as Quantification Learning 10



4th Learning: Methods Are Numerous

Most methods are combinations of

• a data representation φ : X → Z

• a loss function ` : Z × Z → R

• an optimization algorithm

These components can be recombined to even more methods.

Representations: hard4 & soft11 classification, histograms12, tree-based binnings13, kernel means14, …

Loss Functions: least squares4,11, Hellinger distance12, energy distance14, Poisson likelihood5, …

11 Bella et al., “Quantification via Probability Estimators”, 2010, .
12 González-Castro, Alaíz-Rodríguez, and Alegre, “Class distribution estimation based on the Hellinger distance”, 2013, .
13 Börner et al., “Measurement/Simulation Mismatches and Multivariate Data Discretization in the Machine Learning Era”, 2020, .
14 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,

2016, .
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5th Learning: Open Issues in Quantification Research

Complications of experimental physics:

• ordinality: yi ≺ yi+1 ∀ i ∈ Y (to be covered through regularization for ordinal plausibility15)

• background: Q(x) = Q(x,∅) +
∑C

y=1 Q(x, y) (PPS with a noise class8)

• acceptance / class-conditional selection bias: Q(x ∈ B | yi) 6= Q(x ∈ B | yj) ∃ i 6= j

• changing environment: Q(x, y) =
∑

e∈E Q(x, y, e)

• data-MC mismatches / concept shift: Q(x | y) 6= P(x | y) (in addition to PPS)

• inspect contributions of individual data items x ∈ B to h(B) (data selection, human in the loop)

Hence, there are substantial opportunities for quantification-related research in Computer Science.

15 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Recap: Reconstruction of Spectra

Goal: reconstruct the spectrum p(y) of some

quantity y from a measurement q(x).

q(x)︸︷︷︸
measurement

=
∫

M(x | y)︸ ︷︷ ︸
transfer

· p(y)︸︷︷︸
target

dy

Approach: set up a linear system of equations

q = Mp where

{
q = 1

|B |
∑

x∈B φ(x)

Mi = 1
|Di|

∑
x∈Di

φ(x)

and solve it by minimizing some loss, i.e.,

p̂ = arg min
p ∈ ∆C−1

` (p; q, M)
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Conclusion: 5 Learnings From Quantification

Understanding of the Problem Statement:

1) Consistency is a necessary criterion for algorithm selection

2) The prediction error is governed by the representation, the amount of shift, and the data volumes

Improvements of the Methods:

3) Contraints must be implemented, either explicitly or via soft-max

4) Many methods—or aspects thereof—have a potential for improving physics analyses

5) Physics applications motivate further developments in quantification research
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