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Artificial (synthetic) anomalies
With Lorenzetti shower simulation framework

• Motivation: Anomaly detection in multivariate time series is 
crucial for various fields
• Healthcare, financial services, cybersecurity, manufacturing lines,            

data quality monitoring at physics detectors, etc.

• Often serious lack of reliable labels —> artificial anomalies

• Project: Lorenzetti calorimeter simulation with artificial anomalies
1. Insert various anomaly rates and types
2. Identify the anomalies with deep learning anomaly detection for time series
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Lorenzetti 
Calorimeter simulation

• Open source framework
• Simulation of general-

purpose calorimeter, 
based on ATLAS

• Introduce various 
synthetic anomalies:
• Increase noise for cells 

containing physics signal
• Dead detector cells

3
Lorenzetti paper: M.V. Araújo et al. “Lorenzetti Showers - A general-purpose 
framework for supporting signal reconstruction and triggering with calorimeters.”

Clusters from 10 events

Dead cell anomalies

Clusters from 10 events

Lorenzetti code: github.com/lorenzetti-hep/

https://linkinghub.elsevier.com/retrieve/pii/S0010465523000164
https://linkinghub.elsevier.com/retrieve/pii/S0010465523000164
http://github.com/lorenzetti-hep/
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Time series anomaly detection
With reconstruction-based model

4

• Anomaly score defined as reconstruction error (computed with MSE)

• Compare 3 deep learning approaches and one unsupervised baseline
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& see you at the 
Wednesday poster session!

Thank you for your attention…

Feel free to reach out: 

laura.boggia@cern.ch
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DATA QUALITY / SYNTHETIC ANOMALIES

TIME SERIES ANOMALY DETECTION

REFERENCES
[1] M.V. Araújo et al. “Lorenzetti Showers - A general-purpose framework for supporting signal 

reconstruction and triggering with calorimeters.”

✦ Anomalies correspond to increased noise convoluted with physics signal

✦ Same train data, variable anomaly rate in test data

✦ For comparison: unsupervised baseline


✦ Use absolute value of time series as input for POT

✦ Deep time series anomaly detection models: 


✦ iTransformer [5] and TranAD [6] (transformer-based)

✦ USAD [7] (autoencoder-based)

LORENZETTI SHOWER SIMULATION FRAMEWORK

We acknowledge funding from the 
European Union Horizon 2020 
research and innovation programme, 
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The Lorenzetti Showers (LZT) simulation is an integrated software framework 
that provides complete calorimeter information [1].

[2] T. Sjöstrand. “The Pythia Event Generator: Past, Present and Future.”
S. Agostinelli et al. “Geant4—a Simulation Toolkit.”[3]

LORENZETTI SIMULATION CHAIN

1EVT
Event Generation 
✦ Physics event generation with Pythia8 particle generator [2]

✦ For our studies: pp → jets

2 HIT
Detector Simulation 
✦ Detector simulation with Geant4 [3]

✦ Simulates interaction of particles with detector

✦ Produces energy deposits (hits) in calorimeter from particles

3 MB
Pileup Merge (optional) 
✦ Repeat 1 and 2 once for signal particles and once for background  

(soft QCD) events

✦ Merge the energy deposits in the calorimeters

4 ESD
Digitization 
✦ Simulates electronic pulses reacting to energy deposits in 

calorimeter cells

5 AOD
Reconstruction 
✦ Build energy clusters from cell signals 

✦ Construct various other high-level variables based on cell signals 

such as shower shape variables

NEW: insert artificial anomalies corresponding to detector defects

artificial 
anomalies

NEW
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✦ Time series anomaly detection aims to identify anomalous time stamps in 
sequential data.


✦ Focusing on reconstruction-based anomaly detection as visualised here:1 

✦ Anomaly score defined as reconstruction error (computed with MSE)

✦ Insert noise signals that can create clusters independently of the physics signal

✦ More complex noise structures like larger coherent noise signals, detector 

blackouts etc.

✦ Feature selection:


✦ What cluster-level variables are the most relevant to identify anomalies?

✦ Can shower shape variables pick up on injected noise?

OUTLOOK

1The illustration shows the univariate case, but this extends to multivariate time series.

Y. Liu et al. “iTransformer: Inverted Transformers Are Effective for Time Series Forecasting.”[5]
S. Tuli et al. “TranAD: deep transformer networks for anomaly detection in multivariate time 
series data.”

[6]

loca
l

global

✦ Apply POT to each dimension 

Combine anomaly labels:

✦ Inclusive OR

✦ Majority voting

✦ Average anomaly scores

✦ Apply POT to averaged scores

Directly get anomaly labels

Predicted anomaly labelsAnomaly scores 
(N-dimensional)

A. Siffer et al. “Anomaly Detection in Streams with Extreme Value Theory.”[4]

J. Audibert et al. “USAD: UnSupervised Anomaly Detection on Multivariate Time Series.”[7]

Anomaly detection in multivariate time series is crucial to ensure the quality of 
data coming from a physics experiment.

✦ Focus on QCD jet events

✦ Artificially increase noise for some cells

✦ Simulate dead cells (i.e. no detector 

signal)

✦ Some clusters disappeared due to 

dead cells (see figure)

✦ Introduce artificial anomalies into detector complete control over 
anomalies & labels

✦ Dimensions correspond to cluster energy (2), position (2) and shower shapes (5) 
aggregated (mean and std) over each event            dimensions


✦ Compare unsupervised deep learning models for anomaly detection on 
multivariate time series using Peak-over-threshold (POT) method [4]


✦ For all models, combine anomaly scores in 3 ways:

2 ⋅ 9 = 18

Clusters from 10 events

Dead cell anomalies

Clusters from 10 events

✦ Simulates general-purpose calorimeter, though calorimeter cell granularity is 
based on ATLAS technical design


✦ Provides complete calorimeter information (no tracking), including pileup and 
crosstalk effects


✦ Open-source code can be found on github.com/lorenzetti-hep/  or scan:

mailto:laura.boggia@cern.ch

