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Present silicon fron-er
▻ Precise tracking down to ~ 10 µm → 1 fC up to 2⋅1016 neq/cm2

▻ Precise -ming down to ~ 30 ps      → 5 fC up to 3⋅1015 neq/cm2
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The Extreme Fluence Challenge

V. Sola 2

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

1E+19

0,1 1 10 100 1000 10000

M
ax

im
um

 F
lu

en
ce

 [c
m

-2
]

Concurrent Interactions

Limit in Radiation Tolerance

TEVATRON

LHC

HL-LHC

FCC-hh

Silicon detectors have been enabling technology for discoveries on par5cle physics at colliders 

→ CompleX will enable 4D tracking with planar silicon sensors up to the fluence of 5⋅1017/cm2
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Present silicon fron-er
▻ Precise tracking down to ~ 10 µm → 1 fC up to 2⋅1016 neq/cm2

▻ Precise -ming down to ~ 30 ps      → 5 fC up to 3⋅1015 neq/cm2
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Silicon Modelling at Very High Fluences

V. Sola 3

Models of the radia@on damage in silicon are validated @ll about 1016 neq/cm2

A mismatch between data and the predic1ons arises at very high fluences
➣ Dark current increase is smaller than expected
➣ Charge collec6on efficiency is higher than predicted
➣ Increase of the acceptor states slows 

→ Hints of satura@on of the radia@on damage effects
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Silicon Modelling at Very High Fluences
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Models of the radia@on damage in silicon are validated @ll about 1016 neq/cm2

A mismatch between data and the predic1ons arises at very high fluences
➣ Dark current increase is smaller than expected
➣ Charge collec6on efficiency is higher than predicted
➣ Increase of the acceptor states slows

→ Hints of satura@on of the radia@on damage effects

Accurate modelling of silicon damage and sensor behaviour at very high fluences 
is necessary to design the next genera1on of silicon detectors

→ CompleX will extend the understanding and modelling of
      radia6on damage in silicon to the fluence of 5⋅1017 neq/cm2
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Towards the eXtreme Fluences – CompleX
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Planar silicon sensors can operate up to 1016 neq/cm2

Signals from planar silicon sensors become too small
➣ Non-uniformities in the electric field
➣ Impossible to fully deplete the sensors
➣ Collected charge independent from thickness Co
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[doi: 10.1088/1748-0221/9/05/C05023]

http://doi.org/10.1088/1748-0221/9/05/C05023
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Planar silicon sensors can operate up to 1016 neq/cm2

Signals from planar silicon sensors become too small
➣ Non-uniformi6es in the electric field
➣ Impossible to fully deplete the sensors
➣ Collected charge independent from thickness

CompleX will design a new genera1on of silicon sensors
▻ exploit satura1on of the radia1on damage
▻ use thin substrates (20 – 40 µm)
▻ use internal gain to enhance the signal

→ CompleX will develop a new genera6on of planar silicon sensors 
with gain to operate in extreme fluence environments

[doi: 10.1088/1748-0221/9/05/C05023]

http://doi.org/10.1088/1748-0221/9/05/C05023
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Compensated LGADs for eXtreme Fluences
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Doping Profile – Standard LGAD
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––  Boron × 5  F = 0
 

––  Phosp × 4  F = 0
––  Comp        F = 0

––  Boron × 1  F = 1E16

 - - Boron × 1  F = 0

––  Boron × 1  F = 0
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Doping Profile – Compensated LGAD
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Doping Profile – Compensated LGAD
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The CompleX Objectives
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CompleX objec,ves

(i) Extend and develop a radia,on damage 
model able to describe silicon behaviour, 
including satura1on effects, under 
irradia1on up to 5⋅1017 neq/cm2

(ii) Design LGAD silicon sensors that provide 
a charge of ~ 5 fC per par,cle hit up to 
fluences of 5⋅1017 neq/cm2

(iii) Define a produc1on process to build cost-
effec1ve radia1on-tolerant detectors 
through the p–n dopant compensa,on

🎯

CompleX
Workflow

The pathway
to Extreme 

Fluences

Simulation
& Design
WP1

Production
WP1

Testing
WP3

Testing
WP3

Irradiation
WP2

Modelling
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The CompleX Strategy
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The CompleX Outcome
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CompleX to HEP
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▻ The capability of performing 4D tracking up to 1⋅1016 neq/cm2 will allow building 
vertex detectors with 6ming capability and searching for long living par6cles in 
detector regions with high radia6on
→ Muon Collider

▻ The capability of performing 4D tracking up to 5⋅1017 neq/cm2 will allow to build 
trackers in experiments at very high-energy and high-intensity colliders
→ FCC-hh

⇒ The R&D  is compa/ble with the experiments’ /mescale

🎯
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CompleX to HEP
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▻ The capability of performing 4D tracking up to 1⋅1016 neq/cm2 will allow building 
vertex detectors with 6ming capability and searching for long living par6cles in 
detector regions with high radia6on
→ Muon Collider

▻ The capability of performing 4D tracking up to 5⋅1017 neq/cm2 will allow to build 
trackers in experiments at very high-energy and high-intensity colliders
→ FCC-hh

⇒ The R&D  is compa/ble with the experiments’ /mescale

🎯
Synergic to CSN1
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Low-Gain Avalanche Diodes
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LGADs are n-in-p planar silicon sensors
Operated in low-gain regime (20 – 30) controlled by 
the external bias
Cri6cal electric field  Ec ~ 20 – 30 V/µm
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Gain Removal Mechanism in LGADs

V. Sola et al. 16

The acceptor removal mechanism deac6vates the
p+-doping of the gain layer with irradia6on according to

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient
cA depends on the ini6al acceptor density, p+(0), and

on the defect engineering of the gain layer atoms
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NO Carbon
CHBL / CHBH (0.4, 2, 3, 5)

CHBL / CHBH (0.8 – 1) 
CBL / CBH (0.6 –1)

⇒ Is it possible to
improve cA further?

▲  thin sensors from the EXFLU1 batch
[R.S. White, 43rd RD50 Workshop (2023) CERN]

1                                                   10                                                100

https://indico.cern.ch/event/1334364/contributions/5672078/
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Towards a Radia7on Resistant Design
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Lowering cA
can extend the gain 
layer survival up to 
F ≥ 1017 neq/cm2

V. Sola et al. 17

Higher the acceptor density,
lower the removal

1                                                   10                                                100

The acceptor removal mechanism deac6vates the
p+-doping of the gain layer with irradia6on according to

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient
To substan5ally reduce cA, it is necessary to
increase p+(0), the ini5al acceptor density
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UFSD to CompleX
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▻ UFSD – Ultra-Fast Silicon Detectors: Enabling Discoveries   2016
     PI: N. CarGglia – INFN       ERC Advanced Grant

▻ 4DInSiDe – Innova8ve Silicon Detectors for par8cle tracking in 4Dimensions 2019
     PI: N. CarGglia – INFN, CNR, UPO, UniPG, UniTO     PRIN 2017 – MIUR

▻ eXFlu – Silicon Sensors for Extreme Fluences     2020
     PI: VS – INFN, FBK        Grant Giovani CSN5

▻ eXFlu-innova – Thin Silicon Sensors for Extreme Fluences   2022
     PI: VS – INFN, FBK, CNR       AIDAinnova Blue Sky

▻ FLEX – Sensori soBli per fluenze estreme     2022
     PI: VS – UniTO, JSI        Compagnia di San Paolo

▻ ComonSens – A Compensated Design of Thin Silicon Sensors for Extreme Fluences 2023
     PI: VS – UniTO, CNR, INFN       PRIN 2022 – MUR

▻ CompleX – Doping Compensa8on in Thin Silicon Sensors: the pathway to Extreme Radia8on Environments
     PI: VS – UniTO, FBK, INFN       ERC Consolidator Grant
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