

#### Valentina Sola Università degli Studi di Torino and INFN





# Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments

CompleX – ERC-2023-COG

# The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders



Present silicon frontier

- ▷ Precise tracking down to ~ 10  $\mu$ m → 1 fC up to 2·10<sup>16</sup> n<sub>eq</sub>/cm<sup>2</sup>
- ▷ Precise timing down to ~ 30 ps  $\rightarrow$  5 fC up to 3.10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>



# The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders



- ▷ Precise tracking down to ~ 10  $\mu$ m → 1 fC up to 2·10<sup>16</sup> n<sub>eq</sub>/cm<sup>2</sup>
- ▷ Precise timing down to ~ 30 ps  $\rightarrow$  5 fC up to 3.10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>

 $\rightarrow$  CompleX will enable 4D tracking with planar silicon sensors up to the fluence of 5.10<sup>17</sup>/cm<sup>2</sup>

# Silicon Modelling at Very High Fluences

#### Models of the radiation damage in silicon are validated till about $10^{16} n_{eq}/cm^2$

A mismatch between data and the predictions arises at very high fluences

- Dark current increase is smaller than expected
- ➤ Charge collection efficiency is higher than predicted
- Increase of the acceptor states slows
- $\rightarrow$  Hints of saturation of the radiation damage effects



# Silicon Modelling at Very High Fluences

Models of the radiation damage in silicon are validated till about  $10^{16} n_{eq}/cm^2$ 

A mismatch between data and the predictions arises at very high fluences

- Dark current increase is smaller than expected
- ➤ Charge collection efficiency is higher than predicted
- Increase of the acceptor states slows
- $\rightarrow$  Hints of saturation of the radiation damage effects



Accurate modelling of silicon damage and sensor behaviour at very high fluences is necessary to design the next generation of silicon detectors

 $\rightarrow$  CompleX will extend the understanding and modelling of radiation damage in silicon to the fluence of 5.10<sup>17</sup> n<sub>eq</sub>/cm<sup>2</sup>

## Towards the eXtreme Fluences – CompleX

#### Planar silicon sensors can operate up to $10^{16} n_{eq}/cm^2$

Signals from planar silicon sensors become too small

- ➤ Non-uniformities in the electric field
- Impossible to fully deplete the sensors
- Collected charge independent from thickness



[doi: 10.1088/1748-0221/9/05/C05023]

# Towards the eXtreme Fluences – CompleX

Planar silicon sensors can operate up to  $10^{16} n_{eq}/cm^2$ 

Signals from planar silicon sensors become too small

- ➤ Non-uniformities in the electric field
- Impossible to fully deplete the sensors
- Collected charge independent from thickness

#### CompleX will design a new generation of silicon sensors

- ▷ exploit saturation of the radiation damage
- $\triangleright$  use thin substrates (20 40  $\mu$ m)
- ▷ use internal gain to enhance the signal

→ CompleX will develop a new generation of planar silicon sensors with gain to operate in extreme fluence environments



[doi: 10.1088/1748-0221/9/05/C05023]

#### **Compensated LGADs for eXtreme Fluences**



# The CompleX Objectives



#### **CompleX objectives**

- (i) Extend and develop a radiation damage model able to describe silicon behaviour, including saturation effects, under irradiation up to 5.10<sup>17</sup> n<sub>eq</sub>/cm<sup>2</sup>
- (ii) Design LGAD silicon sensors that provide a charge of ~ 5 fC per particle hit up to fluences of  $5 \cdot 10^{17} n_{eq}/cm^2$
- (iii) Define a production process to build costeffective radiation-tolerant detectors through the **p-n dopant compensation**

CompleX Workflow The pathway to Extreme Fluences

# The CompleX Strategy





### The CompleX Outcome



#### CompleX to HEP

The capability of performing 4D tracking up to 1.10<sup>16</sup> n<sub>eq</sub>/cm<sup>2</sup> will allow building vertex detectors with timing capability and searching for long living particles in detector regions with high radiation

 $\rightarrow$  Muon Collider

 ▷ The capability of performing 4D tracking up to 5·10<sup>17</sup> n<sub>eq</sub>/cm<sup>2</sup> will allow to build trackers in experiments at very high-energy and high-intensity colliders
 → FCC-hh

 $\Rightarrow$  The R&D is compatible with the experiments' timescale



#### CompleX to HEP

The capability of performing 4D tracking up to 1.10<sup>16</sup> n<sub>eq</sub>/cm<sup>2</sup> will allow building vertex detectors with timing capability and searching for long living particles in detector regions with high radiation

 $\rightarrow$  Muon Collider

 ► The capability of performing 4D tracking up to 5·10<sup>17</sup> n<sub>eq</sub>/cm<sup>2</sup> will allow to build trackers in experiments at very high-energy and high-intensity colliders
 → FCC-hh

 $\Rightarrow$  The R&D is compatible with the experiments' timescale

Synergic to CSN1









erc

pea ON i U 

**—** 

however ws a. pinions OSe h d essed are e) 40) hand do not necessarily reflect those authors 0 or the European Research f the European U nion **O**I Coundil Executive ie European Agency. Neither th the grantin ng author ca be e esponsib for them e 

0 pe G n 081 ra **120** 242 88 Com plex **S** 

-



#### Low-Gain Avalanche Diodes



LGADs are n-in-p planar silicon sensors Operated in low-gain regime (20–30) controlled by the external bias Critical electric field  $E_c \sim 20-30 \text{ V/}\mu\text{m}$ 

# Gain Removal Mechanism in LGADs



The acceptor removal mechanism deactivates the p<sup>+</sup>-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$ 

where  $c_A$  is the acceptor removal coefficient

 $c_A$  depends on the initial acceptor density, p<sup>+</sup>(0), and on the defect engineering of the gain layer atoms

▲ thin sensors from the EXFLU1 batch [R.S. White, 43<sup>rd</sup> RD50 Workshop (2023) CERN]

> $\Rightarrow$  Is it possible to improve c<sub>A</sub> further?

# Towards a Radiation Resistant Design



The acceptor removal mechanism deactivates the p<sup>+</sup>-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$ 

where c<sub>A</sub> is the acceptor removal coefficient To substantially reduce c<sub>A</sub>, it is necessary to increase p<sup>+</sup>(0), the initial acceptor density



#### UFSD to CompleX

- UFSD Ultra-Fast Silicon Detectors: Enabling Discoveries PI: N. Cartiglia – INFN
- ▷ 4DInSiDe Innovative Silicon Detectors for particle tracking in 4Dimensions PI: N. Cartiglia – INFN, CNR, UPO, UniPG, UniTO
- eXFlu Silicon Sensors for Extreme Fluences PI: VS – INFN, FBK
- eXFlu-innova Thin Silicon Sensors for Extreme Fluences PI: VS – INFN, FBK, CNR
- FLEX Sensori sottili per fluenze estreme PI: VS – UniTO, JSI
- ComonSens A Compensated Design of Thin Silicon Sensors for Extreme Fluences 2023 PI: VS – UniTO, CNR, INFN
- CompleX Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments PI: VS – UniTO, FBK, INFN
  ERC Consolidator Grant

2016 ERC Advanced Grant

2019 PRIN 2017 – MIUR

2020 Grant Giovani CSN5

2022 AIDAinnova Blue Sky

2022 Compagnia di San Paolo

PRIN 2022 – MUR