Discussione su EU Strategy on Particle Physics @ Torino 17 ottobre 2024

multi-TeV Muon Collider

Stato collaborazione e progetto internazionale Aggiornamento attività INFN in corso e future – sinergie

Nicola Amapane - Nadia Pastrone

Gruppi INFN in RD_MUCOL @ CSN1 121 persone/30.2 FTE RD_MUCOL @ CSN1 - ESPP_A_MUCOL @ GE - UE-MUCOL - UE-I_FAST BA BO FE FI GE MI MIB LNF LNL LNS NA PD PI PV RM1 RM3 TO TS Physics, Detector R&D, MDI, Crystals/Targets, Accelerator Activities

ZON-INFRA-2022-DEV-01-01

MuCo

multi-TeV Muon Collider: two colliders in one!

Energetic final states (either heavy or very boosted)

Strong and crucial synergies to design the machine and the experiment to reach the physics goals with energy and luminosity allowing % precision measurements Physics benchmarks steer machine parameters and experiment design

Workshop on e+e-Colliders . Muon Collider and new horizons 22 - 25 Jan 2025 @ LNF

Energy efficiency of present and future colliders

Thomas Roser et al., Report of the Snowmass 2021 Collider Implementation Task Force, Aug 2022

consumption uncertainty for the different collider concepts.

The effective energy reach of hadron colliders (LHC, HE-LHC and FCC-hh) is approximately a factor of seven lower than

that of a lepton collider operating at the same energy per beam

US P5 – International partnership

Stability of the program requires implementing the framework for our international partnerships!

Parallel to the R&D for a Higgs factory,

the US R&D effort should develop a 10 TeV pCM collider (design and technology),

The US should participate in the International Muon Collider Collaboration (IMCC) and take a leading role in defining a reference design.

We note that there are many synergies between muon and proton colliders, especially in the area of development of **high-field magnets**. R&D efforts in the next 5-year timescale will define the scope of test facilities for later in the decade, paving the way for initiating **demonstrator facilities within a 10-year timescale** (Recommendation 6).

INAUGURAL US MUON COLLIDER COMMUNITY MEETING

FNAL – August 9, 2024

THE DREAM MACHINE

An accelerator known as a muon collider could revolutionize particle physics — if it can be built

Motivation for a multi-TeV Muon Collider

Strong interest in high-energy, high-luminosity lepton collider

- combines precision physics and discovery reach
- application of hadron collider technology to a lepton collider

Muon collider promises sustainable approach to the energy frontier

limited power consumption, cost and land use
 site evaluation and reuse of existing tunnels

Technology and design advances in past years

- reviews of the muon collider concept in Europe and US found **no insurmountable obstacle**
- **identified required R&D**, documented in accelerator R&D Roadmap
- first parameters' report submitted October 2023

Aim at 10+ TeV and potential initial stage at 3 TeV NEW OPTION: initial 10 TeV stage at reduced luminosity Interim report <u>https://arxiv.org/abs/2407.12450</u>

Strong support by <u>P5 Report</u> @ December 2023

Towards a muon collider, Eur. Phys. J. C 83 (2023) 864

NEW European Strategy for Particle Physics Update

> Input documents due by March 31 2025

Council approval expected June 2026

Cost and **power** consumption drivers, limit energy reach e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

Panel members: D. Schulte, (Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

presented to CERN Council in December 2021 published https://arxiv.org/abs/2201.07895 now under implementation by LDG + Council...

Roadmap Plan

ĺ		Label	Begin	End	Description	Aspir	ational	Min	imal	
			MOOTE	2021	2025	0'	[FIEy]	[KCHF]	[FTEy]	[KCHF]
			MC.SITE MC NE	2021	2025	Site and layout	15.5	300	13.5	300
			MCAN	2022	2020	gation system	22.5	250	0	0
			MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
			MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
		MDI	MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
		Dinalas/salanaids	MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
		upples/solenoids	MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
		High field	MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
С			MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
) ((Nb3Sn, HTS?)	MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
(10551), 115.)			MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
inimal		RF cavities	MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
			MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
	[КСПГ]	SCENC	MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
		-	MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
	2445	Cooling cell	MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
			MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
		Demonstrator	MC.TAR	2022	2026	Target system	60	1405	9	25
			MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
		ĺ				Sum	445.9	11875	193	2445
								-		

Technically limited timeline to deliver a 3 TeV muon collider by 2045 Technically limited timeline **Baseline design** Facility Conceptual Design Technical Design **Facility Construction** Demonstrator design Preparatory work Demonstrator Prototypes ling Demonstrator exploitation and upgrades Design and modelling Prototypes Scenario Pre-series Production Cost and Ready to Ready to Performance Commit Construct Estimation Aspirational Mi [FTEy] [kCHF] [FTEy] ~70 Meu/5 years 445.9 11875 193 Not yet available the resources of the reduced scenario

Development path

Facing priorities with O(40 FTE) Efforts to increase resources

IMCC Organization after the Roadmap

- Study Leader Daniel Schulte
 - Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers
 Collaboration Board (ICB)

CERN is host organisation, can be transferred to other partner on request of CERN and with approval of ICB Will review governance in 2024, US could join at that time

MoC signed by CERN CEA INFN STFC-RAL ESS IHEP and different universities in EU, US, China

19 countries: CERN, IT, US, UK, FR, DE, CH, ES.....

80 institutes

- - Flected chair : Nadia Pastrone
 - Steering Board (SB)
 - Chair Steinar Stapnes,
 - CERN members: Mike Lamont, Gianluigi Arduini,

Dave Newbold (STFC), Pierre Vedrine (CEA)

Beate Heinemann (DESY)

ICB chair and SL and deputies

- International Advisory Committee (IAC) •
 - Chair Ursula Bassler (IN2P3)

Coordination Committee

Tentative Timeline (Fast-track 10 TeV)

Only a basis to start the discussion, will be reviewed this year

Time-critical Developments

Identified three main technologies that can limit the timeline

Muon cooling technology

- **RF test stand** to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - Muon beam production and cooling in several cells

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Important Developments

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Crucial studies

Physics simulations

- Physics potential
- Detector performances

Muon Cooling Principle

RF @ cooling cells: INFN studies and tests

Demonstrator Facility: a crucial step forward!

Planning **demonstrator** facility with muon production target and cooling stations

Suitable site exists on CERN land and can use PS proton beam

• could combine with **NuStorm** or other option

Possibility around TT10

@ CERN

@ FNAL

International Muon Collider Collaboration: Demonstrator Workshop

@ FNAL October 30 – November 1, 2024

The constraint & the challenge to design and operate an experiment

Machine Detector Interface - beam-induced background

Background is a significant driver for MDI design - background sources:

- Muon decay
- Beam halo losses and Beam-beam (mainly incoherent e-/e+ pair production)

Experiment design evolution

No cuts: all hits

Muon Collider simulation: MAP package Background @ Vs=125 GeV

Nikolai V. Mokhov – FNAL – MAP

Background (MARS simulation) from muon decays and interaction with machine elements included

New detector concepts: **MUSIC** and **MAIA** moving the solenoid inside the calorimeters Donatella Lucchesi et al. – IMCC INFN-TO: Nazar Bartosik et al.

MUSIC design @ 10 TeV

Crucial full simulation studies for Detector performance for low- and high-momentum ..

Massimo Casarsa et al.

Detector concepts for 10 TeV collisions

Two detector concepts are currently under development with different layouts

PbF₂-crystal electromagnetic calorimeter (inside the solenoid)

superconducting solenoid (B = 5 T)

full silicon tracking system

tungsten shielding nozzles

Fe-scintillator hadronic calorimeter (serves as B field return yoke)

muon detectors

ALEPH-like detector

key features being optimized: tracker radius and layout, magnetic field intensity, calorimeter depth, forward muons Si-W electromagnetic calorimeter (ouside the solenoid)

ATLAS-like detector

Full simulation and reconstruction software available on <u>github.com/MuonColliderSoft</u> derived from CLIC's iLCSoft (transition to the Key4hep framework in progress)

INFN-TO:

Nazar Bartosik

Massimo Casarsa et al.

16

ICHEP 2024

Nadia Pastrone et al.

Experiment design requirements @ 10 TeV

Aim at **10+ TeV** and potential initial stage at **3 TeV NEW OPTION:** initial 10 TeV stage at reduced luminosity **Interim report** <u>https://arxiv.org/abs/2407.12450</u>

Strong interest in developing:

- 4D vertex and tracker sensors
- new calorimeters 4D or 5D ideas
- sustainable muon detector
- front-end electronics with on-board intelligence
- powerful reconstruction algorithm
- Al simulation and analysis tool

Detector technology R&D and design ==>>> DRD

- we can do the important physics with technology being implemented for HL-LHC upgrades or follow-ups
- available time will allow to improve further and exploit synergies and new emerging technologies

"Strong planning and appropriate investments in Research and Development (R&D) in relevant technologies are essential for the full potential, in terms of novel capabilities and discoveries, to be realised" ESPPU 2020

BA, LNF, RM1, PI, PV, PD, TO, TS

Promising Technologies and R&D Directions for the Future Muon Collider Detectors

INFN-TO: Nazar Bartosik Nadia Pastrone et al.

On-going R&D on tracking sensors – DRD3

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mathrm{\mu m} imes 25\mathrm{\mu m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes 5\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

Sinergy with timing sensors development for HL-LHC

Promising technologies

Monolithic devices (CMOS): Good timing and spacial resolution, but radiation hardness to be improved

Low Gain Avalanche Detectors (LGAD): Large and fast signal (20-30 ps resolution), moderate radiation hardness

Hybrid small pixel devices:

No gain but fast timing (20-30 ps resolution) and good position resolution. Intrinsically radiation hard

INFN-TO: Nazar Bartosik Marco Ferrero Valentina Sola Cacilia Hanna Anna Rita Altamura et al.

Silicon LGAD sensors for 4D tracking up to very high fluence:

<u>V. Sola et al., Nucl. Instrum.</u> <u>Meth. A 1040 (2022) 167232</u>.

NEW In Padova synergy with ALICE developments both on detector sensors DMAPS and infrastructures

Project funded also by an EU ERC Consolidator Grant

On-going R&D in e.m. calorimeters – DRD6

Crilin – CRystal calorImeter with Longitudinal InformatioN –

semi-homogeneous electromagnetic calorimeter based on Lead Fluoride Crystals (PbF₂) matrices where each crystal is readout by 2 series of 2 UV-extended surface mount SiPMs

High-density crystal:

need for increased layer numbers with space constraints

Speed response:

Cherenkov crystals, ensuring accurate and timely particle detection

Semi-homogeneous:

strategically between homogeneous and sampling calorimeters

ightarrow able to exploit the strengths of both kinds

Flexibility:

able to modulate energy deposition for each cell and adjust crystal size

Compactness:

Unlike segmented or high granularity calorimeters it can optimize energy detection while staying compact

total ionising dose: ~1 kGy/year (100 krad) total neutron fluence: $10^{14} N_{1MeVeq}/cm^2/year$

2-layer 3x3-crystal Crilin prototype

Crilin, *JINST* **17** P09033

Crilin Module Prototype 9x9 crystals/layer – 5 layers

1. Aluminum matrix to hold the crystals:

1.50-100 µm thickness between crystals 2. Thicker (~ 2mm) in the external envelope with microchannels for cooling

ICHEP 2024

2.Kapton strip for polarization and output signal:

1. Handles polarization and output signals for each channel of two SiPMs in series.

95 mm

95 mm

3.Connectors at the back of the 5 assembled modules.

DRD6-WP3 from 2025

Expanding to a 9x9 x5(layers) configuration with a target of 2 $M_B - 22 X_0$.

On-going R&D in hadronic calorimeters – DRD6 - BA

MPGD-based hadronic calorimeter, Nucl. Instrum.Meth. A 1047 (2023) 167731

MPGD-HCAL

based on **resistive Micro-Pattern Gaseous Detectors** as **readout layers for a sampling hadronic calorimeter**

MPGD features:

- cost-effectiveness for large area instrumentation
- radiation hardness up to several C/cm²
- discharge rate not impeding operations
- rate capability O (MHz/cm²)
- high granularity
- time resolution of **few ns**

Past work:

• **CALICE** collaboration: a sampling calorimeter using **gaseous** detectors (RPC) but also tested MicroMegas

one of the goals of such R&D is to

choose the best technology for

calorimetry @ Muon Collider

• **<u>SCREAM collaboration</u>**: a sampling calorimeter combining RPWELL and resistive MicroMegas

R&D plan \rightarrow systematically **compare** three MPGD technologies for hadronic calorimetry: resistive MicroMegas, μ RWELL and RPWELL, while also investigating **timing**

MESH (bulk technique Pilars (pilars are superimposed on the vias) One connection to ground through vias from top and internal DLC layers Top Copper (5 µm) Ploy imide Ploy imide Pre-preg PCB electrode PCB electrode Pre-preg PCB electrode PCB electrode

On-going R&D on muon detectors – DRD1 - PV

Muon detector based on PicoSec Micromegas: <u>C. Aimè et al., 2024 JINST 19 C03052</u>.

PicoSec MICROMEGAS detector is a valid option: time resolution better than 25 ps, very high rate capability

Internationa

R&D TPC - HPTPC - BA

Gabriella Catanesi, Emilio Radicioni

Risorse calcolo RD_MUCOL

PD: Lorenzo Sestini et al. INFN-TO: Nazar Bartosik

- Avere il calcolo distribuito su piattaforme eterogenee non è un vantaggio, molte criticità (ad es. spostare i file da un sistema all'altro)
- Migrazione del framework su Key4hep in corso

Knowledge base

The new site for Muon Collider physics and detector https://mcd- wiki.web.cern.ch/

Back end on https://gitlab.cern.ch/ muon-collider/wiki

https://github.com/MuonColliderSoft

Unique physics case – more studies planned

Z' searches

Z' bosons can be probed directly up to $M_{Z'} \sim Vs$, but indirect searches extend much beyond:

example of a phenomenological study exploring the reach of a muon collide for additional neutral gauge

bosons that couple to the standard model: K. Korshynska et al., arXiv:2402.18460.

Indirect discovery potential for a new Z' boson coupled to the standard model in the final states ee and $\tau\tau$:

assumed 1 ab⁻¹ at \sqrt{s} = 3 TeV and 10 ab⁻¹ at \sqrt{s} = 10 TeV;

off-peak analysis based on observables of the final state leptons. HL-LHC

Z' exclusion limits at 95% C.L. U1X -USHL LH -ALR -LR -E6 · 10 TeV SSM -3 TeV 10 20 30 40 60 50 70 $M_{Z'}$ in TeV

Expected performance on Higgs couplings

Higgs boson couplings to fermions and bosons are extracted from a global fit to the Higgs boson production cross sections:

- ✓ the set of channels of full-simulation studies at 3 TeV is not yet complete for a global fit
- ✓ the muon collider potential at 3 TeV (1 ab⁻¹)

and 10 TeV (10 ab⁻¹) is evaluated with a parametric detector simulation (partially tuned on the detailed detector simulation at 3 TeV) by

@ Torino: 16 persone - 3.21 FTE

50

20

30

20

10

30

10

10

10

20

10

15

20

20

MInternational UON Collider Collaboration

Anna Rita Altamura

- Nicola Amapane
- Nazar Bartosik
- Marco Ferrero
- Linda Finco
- Bilal Kiani
- Silvia Maselli
- Paolo Mereu
- Carlo Mingioni
- Marco Nenni
- Giacomo Ortona
- Luca Pacher
- Nadia Pastrone
- Lorenzo Peroni
- Martina Scapin
- Valentina Sola 20

RD_MUCOL UE-MuCol UE-IFAST

- - - 10

10

5 + 1 **aMUSE**

RL: Nicola Amapane **RN:** Nadia Pastrone

ATTIVITÀ

- Fisica: teoria
- Fisica: simulazioni
- Sviluppo software
- Studi di rivelatore
- R&D rivelatore
- Interfaccia acceleratore: MDI
- Studi cella di raffreddamento
- Altri R&D acceleratori

Towards a multi-TeV Muon Collider

FINAL GOAL:

- to exploit the physics potential of such a unique facility aiming at the highest energy and highest luminosity
- Advances in detector and accelerator pair with the opportunities of the physics case

- → Time scale is becoming feasible for a multi-TeV collider facility to be ready by 2050
- Muon Collider a long story
- New Physics opportunities: Direct searches+Precision \rightarrow rich physics program
- To get people engaged, in particular the Early career scientists, it is important also to get intermediate experimental setups/goals and synergies where the new technologies in their infant status may be tested

➔ Muon Collider Demonstrator with physics cases

- Synergies for enabling technologies opens new opportunities now and in the next 5-10 years
- The level of complexity requires to plan ahead evaluating the needs but with an open mind for ingenuity
- Detector and accelerator fields are a great playground to deeply understand Nature and benefit Society

extras

Colliders timescale: Snowmass2021

2050

2060

2030

2040

International UON Collider Collaboration

Proposal Name	Power Consumption	Size	Complexity	Radiation Mitigation
MC (14 TeV)	~300	27 km	Ш	ш
FCC-hh (100 TeV)	~560	91 km	П	Ш

2090

2090

2080

2070

MC-10-14 FCChh

RF Systems High field magnets Fast booster magnets/PSs High power lasers Integration and control Positron source 6D μ -cooling elements Inj./extr. kickers Two-beam acceleration e^+ plasma acceleration Emitt. preservation FF/IP spot size/stability High energy ERL Inj./extr. kickers High power target Proton Driver Beam screen Collimation system Power eff.& consumption

Proton-driven Muon Collider Concept

- Recommendation from 2008 Particle Physics Project Prioritization Panel (P5)
- Approved by DOE-HEP in 2011 → Ramp down recommended by P5 in 2014

AIM: to assess feasibility of technologies to develop muon accelerators for the Intensity and Energy Frontiers

Status of IR lattice design @ 10 TeV

Challenges: small ß*, large ß functions in FF, strong chromatic effects 10 TeV IR lattice (IMCC):

Dx

 \sqrt{s} =3 TeV \sqrt{s} =10 TeV **IMCC (v0.7) US MAP** Version FF scheme Quadruplet (with Triplet (with dipolar dipolar component) component) ß* 5 mm 1.5 mm |* 6 m 6 m Max. field at 12 T 20 T inner bore

3 TeV IR lattice (MAP):

Tentative Staged Target Parameters

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Need to spell out scenarios

Need to integrate potential performance limitations for technical risk, cost, power, ...

Parameter	Unit	3 TeV	10 TeV	10 TeV	10 TeV	Collider
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	tbd	13	
Ν	10 ¹²	2.2	1.8	1.8	1.8	
f _r	Hz	-5	5	5	5	
P _{beam}	MW	5.3	14.5	14.4	14.4	
С	km	4.5	10	15	15	
	Т	7	10.5	SZ	7	
ε	MeV m	7.5	7.5	7.55	7.5	
σ _E / E	%	0.1	0.1	tbd	0.1	
σ _z	mm	5	1.5	töd	1.5	
β	mm	5	1.5	tbd	1.5	
3	μm	25	25	25	25	0.
σ _{x,y}	μm	3.0	0.9	1.3	0.9	

Magnet Demands @ Muon Collider

Preliminary study in detector magnet

Detector magnet workshop – 5 October 2023

Upon request from Detector group, some preliminary calculations on a possible solution for a detector solenoid has been performed, based on CMS cable

Main features:

- Tracker region: -2200 < z < 2200, 0 < r < 1500
- B at IP: 3.66 T
- B = 3.60 ± 0.08 T
- Field uniformity: ±2.3%
- (Almost no optimisation)
- Max Br = 0.12 T
- Stored energy: 2.25 GJ
- Current density: 12.3 MA/m²
- Total coil thickness: 288 mm
- Current: 19.5 kA
- Cable size: 72 x 22 mm²
- Inductance: 11.85 H

B [tesla] Max: 4,000 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 Min: 0.000

Realistic magnetic field map will be used in BIB generation and detector studies as soon as a decision is taken.

Main show stopper: no one produces aluminium stabilised cables Main advantage: similar to something existing & working

Cooling Cell Technologies

Are developing example **cooling cell** with integration

- tight constraints
- additional technologies (absorbers, instrumentation,...)
- early preparation of demonstrator facility

RF cavities in magnetic field

Gradients above goal demonstrated by MAP **New test stand** is important

- Optimise and develop the RF
- Different options are being explored
- Need funding

Most complex example 12 T

HTS solenoids

Ultimate field for final cooling Also consider cost

Windows and absorbers

- High-density muon beam
- Pressure rise mitigated by vacuum density
- First tests in HiRadMat

Attività R&D Acceleratori simulazioni – prototipi – misure di laboratorio

MI, GE, LNL, LNS, NA, <mark>PD, TO, TS</mark> (FE, RM1, RM3)

- Magneti (MI-LASA, GE) → progetto ESPP, EU-MuCol (WP7)
- Radiofrequenze SC (SC-RF) (MI-LASA) → progetto ESPP , EU-MuCol (WP6)
- Radiofrequenze NC-RF (MI-LASA,LNL,LNS,NA) → progetto ESPP , EU-MuCol (WP6)
- Integrazione cooling cell (MI-LASA,LNL,LNS,NA,TO) → EU-MuCol (WP8)
- Machine Detector Interface
 progetto ESPP (personale), EU-MuCol (WP2-WP5)

CRUCIALE PER STUDI DI FISICA E DETECTOR – PERFORMANCE MACCHINA

• Cristalli per i fasci, misure di laboratorio per finestre sottili in fase di definizione

Experimental environment due to beam background

Towards a detector @ 10 TeV: tracker studies

Comprehensive experiment designs are being developed for $\sqrt{s} = 3TeV$ and 10 TeV with

MInternational UON Collider Collaboration

optimisation studies of the MDI + detector happenning together Example: cluster-shape filtering less effective at $\sqrt{s} = 10 \text{ TeV}$ (BIB is more central)

BUT time filtering is more effective (different time structure of BIB hits)

Simulated performances

- ECAL barrel with Crilin technology implemented in the simulation framework
 ➤ 5 layers of 45 mm length, 10 X 10 mm² cell area → 21.5 X₀
 ➤ In each cell: 40 mm PbF₂ + 3 mm SiPM + 1 mm electronics + 1 mm air
- Design optimized for BIB mitigation: thicker layers, BIB energy integrated in large volumes → reduced statistical fluctuations of the average energy

5 layers wrt to 40 layers of the W-Si calorimeter → factor 10 less in cost (6 vs 64 MCHF)

Prototypes and performances

Variable absorber thickness based on 2cm thick slabs Prototype with 6 samplin

layers corresponding to 20cm calorimeter depth (1 X_c)

[1] D.Shaked Renous, JINST 1498 (2020) 012040 (RD51 SCREAM

MOSAIC PGA-boa

2-6 GeV

RD51 common project:

Design of MPGD-based HCAL cell

Plugincards with

4 FATICZ chips

Development of Resistive MPGD Calorimeter with timing measurement (2021-2023)

Detector design: Active area 20×20 cm², pad size 1×1 cm² - 7 µ-RWELL - 4 MicroMegas - 1 RPWELL

Prototype characterization performed in BA, LNF, NA, RM3 INFN and Weizmann Institute of Science laboratories

SPS test beam:

Goal:

validating the readout detectors with MIPs and compare MPGDs

- **MPGD-HCAL** •
 - Goal: measuring the energy resolution of a 1 λ calorimeter prototype with 1-10 GeV pions beam

Luigi Longo et al.

ICHEP 2024

- Developed **G4 simulation** for the **small** prototype, including a digitization algorithm to account for charge-sharing among adjacent pads and detector efficiency
 - Good data/MC comparison

8 LVDS: 1RX 1Clk 4TX 1 F-OR 1 Res

4 FATIC

4 FATIC

Trigger & Co

MPGD

10 x 10 cm² - uRWELL

MM-resistivo

	D	
	Detector	Uniformity (%)
2	MM-RM3	$(12.3 \pm 0.8)\%$
	MM-Na	$(11.6 \pm 0.8)\%$
	MM-Ba	$(8.0\pm0.5)\%$
	RPWELL	$(22.6 \pm 4.7)\%$
	μ rw-Na	(11.3 ± 1.0) %
	µrw-Fr2	$(16.2 \pm 1.7)\%$
	μ rw-Fr1	$(16.3 \pm 1.1)\%$

2cm

Next steps

2024-2025

- Consolidating results with present prototypes in two test beams in 2024
- 4 large detectors (50×50 cm²) to be built in 2025:
 - Design optimization to exclude cross-talk and simplify manufacturin

Long term plans:

• construction of 4 1x1m2 layers, 2 of them with embedded electronics

Bottlenecks:

- new electronics is needed:
 VMM3a or FATIC3 analog electronics considered requiring a step forward to digital embedded electronics
- Electronics R&D is expensive and need a lot of support not only on the chip but also on backend, firmware,...

Project Organization

Design Study activities: EU project

Total EU budget: 3 Meu start March 1 2023 – 4 years18(+14) beneficiaries (associated)END 28 FEB 2027

INFN 510 keu UniMI 300 keu UniPD 100 keu + associate partners: UniBO, UniPV INCLUSO OVERHEAD

MuCol study will produce a coherent description of a novel particle accelerator complex that will collide muons of opposite charge at the energy frontier. The study will target a centre-of-	INFN – BUDGET		
mass energy (ECIVI) of 10 TeV with 3 TeV envisaged as a first stage.	Total: 408 keu		
 The main outcome of MuCol will be a report documenting the facility design that should demonstrate that: the physics case of the muon collider is sound and detector systems can yield sufficient resolution and rejection of backgrounds; there are no principle technology showstoppers that will prevent the achievement of a satisfactory performance from the accelerator or from the detectors side; 	AdR: 362 keu Altro: 46 keu		
 the muon collider provides a highly sustainable energy frontier facility as compared to other equivalent colliders; exploiting synergies with other scientific and industrial R&D projects, a valuable platform to provide Europe a leading edge not only in terms of discovery potential, but also for the development of associated technologies. 	GE: 10 keu missioni MI: 8 keu missioni		
The final report will include a thorough assessment of henefits and risks of the accelerator and	MI: 16 keu consumo		
detector complex including an evaluation of the scientific industrial and societal return	MI: 8 keu licenze		
beyond high-energy physics, the cost scale and sustainability of the complex and the impact arising from an implementation on the CERN site.	TO: 4 keu progetto		

MuCol MuCol MuCol

HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development

RF @ cooling cells: E-field in High Magnetic Gradients

 For the cooling cell integration: preliminary scenario designed with a target electric RF field of more than 30 MV/m for a 3 GHz cavity

- The value of the magnetic field in the cooling cell considered for the demonstrator is 7.2 T (at the coils center), and a maximum gradient in longitudinal direction in excess of 24 T/m (at the cavity center).
- It is agreed to consider a magnetic system that will produce the field and field gradient, with flexibility on their combination, from a uniform field of 7 T (on axis), to a gradient field of 30 T/m (on axis) over the cavity volume.

RF PARAMETERS TO BE STUDIED

Preliminary design for a single RF cavity suitable to be installed in **a 500 mm diameter bore solenoid**

- the RF frequency
- the required gradient of the electric field in a cell vs. the peak gradient achievable in the RF structure
- expected breakdown rate and eventual mitigation strategy, especially in the high magnetic field and high magnetic gradient they experience
- specific materials and surface treatments for the cavity bodies.
- the type of RF coupling from cell to cell in a RF structure
- the space available to fit ancillaries (e.g. tuners, power couplers, cooling pipes etc...), considering the tight interference with the cryomagnetic system
- the available or realistically feasible power sources

Implementation plan options: staging

Important timeline drivers:

Magnets

- HTS technology available for solenoids (expected in 15 years)
- Nb₃Sn available for collider ring, maybe lower performance HTS (expected in 15 years)
- High performance HTS available for collider ring (may take more than 15 years)
 Muon cooling technology (expected in 15 years, with enough resources)
 Detector technologies and design (R&D plan starting, finalized design expected in 15 years)

Energy staging

• Start at lower energy (e.g. 3 TeV, design takes lower performance into account)

Luminosity staging

- Start at 10 TeV with the highest reachable energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

Consider reusing LHC tunnel and other infrastructures

Could be much smaller with improved HTS ramping magnets

Size scales with energy but technology progress will help

Not reused

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

Some considerations are important

- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

Potential site next to CERN identified

- Mitigates neutrino flux
 - Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)

CDR Phase, R&D and Demonstrator Facility

Broad R&D programme can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- **CDR** development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power

Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

With cryostat Coil support structure Tie rods for repulsion and compression forces CCHTS coils

49

Summary of activities towards R&D plans

Each WP is working to identify challenges and R&D plans towards a baseline design:

- Physics and MDI
- Proton complex
- Target design
- Muon Cooling
- Accelerator Complex
- Collider Ring
- RF Technology
- Magnet Technology
- Cooling cell integration

Aperture at 5 σ + 2[cm]

100

s [m]

120

140

• Demonstrator

High-intensity high-energy pion source

Collimation and

phase rotation

Two stage

crvocooler

Thermal

shield

Vacuum

vessel

