

The FOOT experiment

Andrey Alexandrov, Vincenzo Boccia, Giovanni de Lellis, Antonia di Crescenzo, Giuliana Galati, <u>Adele Lauria</u>, Maria Cristina Montesi, Valeri Tioukov

7/10/2024

Charged Particle therapy for Cancer Treatments

- Cancer treatment by radiation: use of different kind of radiation to kill cancer cells by direct and indirect damage of DNA cells
- Charged Particle therapy (CPT): uses heavy ions instead of photons and electrons

Photons vs Protons

Photons (or x-rays) are small packets of high energy light.

Photon energy decreases as it goes through the body...

PHOTON

BEAM

HEALTHY CELLS DAMAGED BY THE BEAM Gaps between treatments give time for healthy cells to recover.

...and keeps travelling after hitting the tumour.

BRAIN TUMOUR

Protons are tiny particles from the centre of atoms.

> FEWER HEALTHY CELLS DAMAGED BY THE BEAM Good for turnours close to sensitive tissues, such as the brain or spinal cord.

... which stays inside the tumour.

https://news.cancerresearchuk.org/

Heavy ion therapy facilities around the world

https://www.particle.or.jp

Patients treated with Protons and Carbons (2007-2022)

Charged Particle therapy for Cancer Treatments

Target Fragmentation:

- Target fragments have very low energies (short range, hundreds of mm)
- Difficult to detect

(non-proton) Beam Fragmentation:

- Projectile fragments have long range
- Non-zero dose beyond the Bragg peak to address

Particle therapy: fragmentation of the target

The nuclear fragmentation of the target and beam particles is an open issue

Proton beam (Target fragmentation):

- Small range fragments (~tens of μm)
- Missing experimental data for heavy fragments having the greatest contribution to the dose
- Increase of biological damage (~10%) in the entrance channel

Charged particles (Beam and target fragmentation):

- Fragments have the same velocity of the beam, but the lower mass allows longer range producing tail beyond the Bragg peak
- Scarce validation data for ¹²C clinical beam
- New beams (4He and 16O) to be studied

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani FHD Thesis, 2007. Nuovo Cimento C, 31, 2008

Measurements of nuclear fragmentation cross sections useful to improve Treatment Planning Systems for ion therapy

The FOOT (FragmentatiOn Of Target) experiment

FOOT aims at measuring nuclear fragmentation cross sections to improve Treatment Planning Systems for proton and ion therapy

- ~ 100 members
 - INFN: 12 units (Milano, Roma Sapienza, Roma TorVergata, Bologna, TIFPA, Pisa, Torino, Napoli, Perugia, LNF, Bari)
 - 3 laboratories: CNAO, GSI, IPHC
 - 15 universities: France, Italy, Japan, Germany

FOOT for space

• Charged particles in space: Solar Particles Events (SPEs), Galactic Cosmic Rays (GCRs), geomagnetically trapped particles

Interaction with walls/shielding of spacecraft produce secondary fragments

FOOT Physics Program

→ Aim: beam and target fragmentation cross sections with 5% accuracy

- Experiment design to perform mass and charge identification at few % accuracy
- Direct/Inverse kinematics approaches
- \rightarrow ⁴He, ¹²C, ¹⁶O beams of 200-800 MeV/u on ¹²C and C₂H₄ targets

Physics	Application field	Beam	Target	Upper Energy (MeV/nucleon)	Kinematic approach	Interaction process
Target fragmentation	PT	¹² C	C,C ₂ H ₄	200	inverse	p+C
Target fragmentation	PT	¹⁶ O	C,C ₂ H ₄	200	inverse	p+O
Beam fragmentation	PT	⁴ He	C, C ₂ H ₄ , PMMA	250	direct	α+C, α+H, α+O
Beam fragmentation	PT	¹² C	C, C ₂ H ₄ , PMMA	400	direct	C+C, C+H, C+O
Beam fragmentation	PT	¹⁶ O	C, C ₂ H ₄ , PMMA	500	direct	0+C, 0+H, 0+0
Beam fragmentation	Space	⁴ He	C, C ₂ H ₄ , PMMA	800	direct	α+C, α+H, α+O
Beam fragmentation	Space	¹² C	C, C ₂ H ₄ , PMMA	800	direct	C+C, C+H, C+O
Beam fragmentation	Space	¹⁶ O	C, C ₂ H ₄ , PMMA	800	direct	0+C, 0+H, 0+0

Inverse kinematic approach

- Protons on "patient" (98% C, O, and H nucleus) can be replaced by ¹⁶O, ¹²C ion beams impinging on a target made of protons
- \bullet By applying the Lorentz transformation (well known β) it is possible to switch from the laboratory to the patient frame

p (200 MeV) on O₂: range of fragments

Fragment	E (MeV)	LET (keV/µm)	Range (µm)
¹⁵ O	1.0	983	2.3
¹⁵ N	1.0	925	2.5
¹⁴ N	2.0	1137	3.6
¹³ C	3.0	951	5.4
¹² C	3.8	912	6.2
¹¹ C	4.6	878	7.0
¹⁰ B	5.4	643	9.9
⁸ Be	6.4	400	15.7
⁶ Li	5.8	215	26.7
⁴ He	5.0	77	48.5
³ He	4.7	89	38.8
² H	2.5	14	68.9

The experimental challenge of measuring H cross section

- Gas target: Low Cross-Section
- Difficulty to make a H target
- Variations in target temperature and density can significantly affect the cross-section

Cross Section Measurement

The setups

- Table-top experiment: small dimensions of the experimental halls of treatment centres
- Two complementary setups:
 - nuclear emulsions spectrometer to measure light charged fragments (Z≤3)
 - magnetic spectrometer with electronic detectors to measure the higher Z fragments (Z≥3)

The nuclear emulsion setup

The nuclear emulsion setup

Cross-section measurements with Nuclear Emulsions setup

Beam	Facility / Year	Aim	Status
Oxygen @ 200 MeV/n	GSI 2019	Hadrontherapy	Analysis on going
Oxygen @ 400 MeV/n	GSI 2019	Hadrontherapy	Analysis on going
Carbon @ 700 MeV/n	GSI 2020	Radioprotection in space	Data aquired
Carbon @ 221 MeV/n	CNAO 2023	Hadrontherapy	Scanning of Nuclear emulsion films ongoing

Nuclear emulsions development and scanning

Charge identification with Nuclear Emulsions spectrometer

Two complementary methods:

- Cut based-analysis to distinguish cosmic rays, Z=1 and Z=2 (high energy) fragments
- Principal Component Analysis to separate Z=2 (low energy), Z=3 and Z≥4 fragments

