NEW FRONTIERS IN NEUTRINO PHYSICS AT CERN

Antonia Di Crescenzo Università Federico II and INFN - Napoli, Italy

> Naples-Chile Scientific Cooperation Meeting 7 October 2024

NEW FRONTIERS IN NEUTRINO PHYSICS AT CERN

NEUTRINO PHYSICS AT CERN: THE **SND@LHC** EXPERIMENT

THE SND@LHC DETECTOR

OFF-AXIS LOCATION

- Rapidity range: 7.2 < η < 8
- Enhances ν flux from **charm** parents
- Complementarity with FASER_v, located on-axis in symmetric tunnel (TI-12)

https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf

STRATEGY

About Existing site (avoided major civil engineering)

- Enough material to shield against collision debris
- Use LHC magnets to deflect charged particles

TI-18 LOCATION

- Charged Old LEP positron transfer line tunnel
- 480 m away from IP1
- 100 m of rock between detector and IP1

Operation in Run 3 (2022-2026) to collect ~290 fb⁻¹

THE SND@LHC CONCEPT

Hybrid detector optimised for the identification of three neutrino flavours and for the detection of feebly interacting particles

VETO PLANE:

- two (2022–2023) / three (2024-)
- 1 cm-thick scintillator planes

TARGET, VERTEX DETECTOR AND ECAL:

- 830 kg tungsten target
- Five walls x 59 emulsion layers + five scintillating fibre stations 84 X₀, 3 λ_{int}

HCAL AND MUON SYSTEM:

- Eight 20 cm-thick Fe blocks+ scintillator planes
- Last 3 planes have finer granularity to track muons
- 9.5 λ_{int}

EXPERIMENT TIMELINE August 2020

Scattering and Neutrino Detector at the LHC

Letter of Intent

January 2021

SND@LHC

DATA TAKING IN RUN3

- Delivered luminosity in 2022-2024: 186.6 fb⁻¹
- Integrated luminosity in 2022-2024: 175.8 fb⁻¹

024: 186.6 fb⁻¹ 2024: 175.8 fb⁻¹

96% efficiency

NEUTRINO OBSERVATION

- First observation of muon neutrinos produced at colliders based on 2022 data published last year
- 8 observed v_{μ} candidates
- Observation significance 7σ
- Updated results using 2022+2023 data:
- **32** observed v_{μ} candidates
- Measurement of the hadronic energy

Editors' Suggestion

Observation of Collider Muon Neutrinos with the SND@LHC Experiment

PHYSICAL REVIEW LETTERS 131, 031802 (2023)

PRL 131 (2023) 031802

Display of a v_µ CC candidate event

EMULSION HANDLING AND SCANNING

Emulsion handling and chemical development performed at the CERN emulsion facility and dark room

11500 emulsion films (415 m²) developed in 2022-2024

Emulsion scanning performed in different laboratories **1) Bologna:** 2 microscopes

- 2) CERN: 4 microscopes
- 3) Napoli: 3 microscopes
- 4) Santiago: 1 microscope installed in 2024

EMULSION DATA ANALYSIS AND RECONSTRUCTION

High density environment: up to 4x10⁵ tracks/cm²

Tracks reconstructed in 1x1x30 mm³

Track multiplicity: 6 Average #segments: 13 Average fill factor: 0.7 Average IP: 0.2 um

Reconstructed neutrino-like vertex

Position resolution 0.2 µm

Reconstructed electromagnetic shower

NEUTRINO PHYSICS AT THE **ENERGY** FRONTIER: THE **ADV-SND** EXPERIMENT

ADV-SND: MOTIVATION

- Exploit the High-Lumi LHC to perform neutrino physics measurements in the TeV energy range with unprecedented statistics
- Upgrade the SND@LHC detector to cope with high background rates
- Improve detector performances in energy measurement and charge separation
- Optimise angular acceptance to improve statistics and reduce systematic uncertainties

	LH SN	LHC Run3 SND@LHC		HL-LHC AdvSND	
	Flavour	Target	Targe	et+HCAL	
	$egin{array}{c} u_{\mu}+ar{ u}_{\mu} u_{e}+ar{ u}_{e} $	$ \begin{array}{c c} 1.2 \times 10 \\ 3.9 \times 10 \\ 3.0 \times 10 \end{array} $	$egin{array}{c c} 3 & 1. \\ 2 & 4. \\ 1 & 2. \end{array}$	3×10^{5} 5×10^{4} 2×10^{3}	
	Tot	$ 1.6 \times 10$	$\frac{3}{1}$	$.8 \times 10^{5}$	
	LI	HC Runa ND@LH	B HL C Ad	-LHC IvSND	
ement	Ur Sta	at. Sys.	$\begin{array}{c c} & \text{Uncer} \\ & \text{Stat.} \end{array}$	rtainty Sys.	
d hadron yield tio for LFU test 3 tio for LFU test 1		$egin{array}{ccc} & 35\% \ & 22\% \ & 10\% \end{array}$	$ \begin{array}{c c} 1\% \\ 5\% \\ 1\% \end{array} $	$5\% \\ 10\% \\ 5\%$	
$\overline{\nu}_{\mu}$ cross-sec	tion -	· -	1%	5%	

ADV-SND DETECTOR LAYOUT

- Active surface: 40x40 cm²
- Material: W
- Total mass: 1.3 tons
- Sensitive layers: Silicon strips

DETECTOR LOCATION

- Detector located in the TI-18
- Optimization of detector position to increase the angular acceptance
- Civil engineering works required
- ~5 m³ excavation in the floor to host the detector

ADV-SND TRACKING SYSTEM

- Re-use of CMS Tracker Outer Barrel (TOB) modules
- Design of new mechanics and electronics for the AdvSND Tracker

CMS TRACKER DECOMMISIONING AND RECOVERY OF TOB MODULES

ADV-SND: TIMELINE

YEAR	2024			
QUARTER	Q1	Q2	Q3	Q4
Electronics and Mechanics development				
prepare front end boards and cables for silicon				
Prototype target production				
Test beam Prototype				
Civil engineering				
advance work to prepare TI18 and UJ18 area				
empty area for excavation work				
excavation and reinforcement floor				
evacuation through IP1				
Detector construction				
Disassembling CMS tracker				
Assembling Neutrino target				
Assembly magnetized HCAL				
Test to validate functioning detector (cosmics +)				
Cooling infrastructure in experimental site				
Installation of detector underground				
Beam Test of prototype (Target + HCAL)				

NEUTRINO PHYSICS AT THE **INTENSITY** FRONTIER THE **SHIP** EXPERIMENT

PHYSICS MOTIVATION

· Many mysteries beyond the Standard Model of Particle Physics remain, and at the GeV-scale there are plenty of areas, where New Physics could be hiding from collider experiments

• SHiP is designed to explore these blank spots on the map!

SEARCH FOR HIDDEN PARTICLES (SHIP) AT A DEDICATED BEAM DUMP FACILITY (BDF)

High-Intensity (HI) upgrade of CERN SPS 400GeV proton facility

SND

- General-purpose **beam dump facility**
- Dedicated beam to ECN3

Rich program at the Scattering & Neutrino Detector (SND):

90m

[CERN-SPSC-2013-024, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

BDF/SHiP approved by the CERN Research Board in March 2024

Search for Feebly-Interacting Particles with the Hidden Sector Decay Spectrometer (HSDS):

Original Proposal (2013): Developed for new cavern EHN4 ► Refined Proposal (2023): Adaptation to existing ECN3 facility

Target & Hadron Stopper

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-PBC-Notes-2021-005, CERN-PBC-REPORT-2023-003, CERN-SPSC-2023-033 / SPSC-P-369]

- High-density proton target: 12λ Ti-Zr-Mo (TZM) + W blocks, clad by Ta
- Optimised for heavy meson production
- Shielding: Cast iron & concrete, water-cooled & vacuum-confined
- 5m-long magnetised hadron stopper

(Superconducting) Magnetic Muon Shield

CERN-SHIP-NOTE-2016-005, 2017 JINST-12-P05011, CERN-SPSC-2019-049 / SPSC-SR-263, EPJC-80(2020)3-284, CERN-SPSC-2023-033 / SPSC-P-369]

- **Alternate-polarity scheme:** Split of **positive & negative** μ to **left & right** of decay volume
- ECN3 optimisation (hybrid SC / NC): 5.1T Shortened, preserving experiment sensitivity
- Initial (& fallback) design (NC): 1.7T

Ongoing ML-assisted optimisation campaign

Reduction of μ rate: $2x \ 10^{10} \mu \rightarrow < 10^5 \mu \text{ per spill}$

Prompt dose, y [-110:110], all particles 108 106 500 104 Sanctuary 102 -500 10-5 10* 1000 14000 16000 6000 12000 8000

BDF/SHiP: Scattering & Neutrino Detector (SND)

DONUT / OPERA / SND@LHC

- Emulsion Cloud Chamber (ECC) bricks: AgBr nuclear emulsions interleaved with W
- **Target Tracker (TT):** 18 layers of **SciFi**
- μ spectrometer: Drift tubes (4 stations) Air core dipole magnet: 1 T
- **Re-optimisation study** for **realtime readout** using CMS TOB silicon modules (AdvSND)

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-LHCC-2020-002, CERN-SPSC-2023-033 / SPSC-P-369, EPJC(2024)84:562, CERN-LHCC-2024-007 / LHCC-I-040]

Hidden Sector (HS) Decay Volume

[CERN-SPSC-2019-049 / SPSC-SR-263, ACME (2021) 21:3, CERN-STUDENTS-Note-2023-122, CERN-SPSC-2023-033 / SPSC-P-369]

50m-long decay volume:

minimum BG from $v \& K_{\nu}, K_{s}, \Lambda$

He at atmospheric pressure

Initial design: Evacuated vessel at < 10⁻² bar

Lightweight structure (AI / stainless steel) Low material budget to **minimise** μ and ν **interactions**

Support for LS-SBT integration

HS Detector: Spectrometer Straw Tracker (SST) & Magnet

- ۲
- ۲

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

Large aperture: 4.0m x 6.0m

Cu/Au-coated Mylar drift tubes (NA62 design): 4m length, 2cm diameter, 36µm wall thickness, Ar:CO₂ mixture (70:30) Low material budget

2x 2 stations of 4 double layers at 10° stereo angle, **10 000 channels altogether**

Magnet (NC baseline): 0.65Tm / 0.15T SC options being studied (MgB₂)

HS Detector: Timing Detector (TD)

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

- **EJ200 plastic scintillator bars:** 135cm x 6cm x 1cm
- **Readout** at both ends by **SiPM arrays**
- 3 columns of 111 vertically staggered bars (5mm overlap), 666 channels altogether
- Timestamp for SST
- **ToF identification** of particle decay products

Suppression of μ combinatorial BG

HS Detector: Particle Identification (pID) & Calorimeter (ECal / HCal)

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

Integrated system of pID & calorimeter

Electromagnetic sampling calorimeter (ECal): 40 layers of thin Fe absorbers (1/20 λ each) & plastic scintillators

Compact hadron sampling calorimeter (HCal): 5 layers of thick Fe absorbers (1 λ each) & plastic scintillators

Total length: 7λ (> 99.5% π interaction probability)

1 – 3 MicroMeGaS high-precision layers

Possible 1m-air gap for additional μ stations

SHIP TIMELINE

Accelerator schedule	2022	2023	2024	2025				
LHC		Run 3						
SPS (North Area)								
BDF / SHiP	Study		esign and p	orototyping				
Milestones BDF			DR studies					
Milestones SHiP		TDR studies						
		́ Арр	oroval for	TDR				

- ~2.5 years for Detector Technical Design Reports (TDRs)
- Start data taking in 2031

IT'S TIME FOR NEUTRINO PHYSICS AT CERN

