

Study and characterization of betatron radiation source from Laser Wakefield Accelerator

Daniele Francescone

daniele.francescone@uniroma1.it

XXXVII PhD School in Accelerator Physics

University of Rome "Sapienza"

Supervisors: Prof. Enrica Chiadroni Dr. Giancarlo Gatti

Outline

- Introduction
 - Eupraxia/Eupas
- Theory
 - Plasma acceleration
 - Betatron radiation
 - Equation of motion
 - Calculated radiated spectrum
- Simulation
 - PIC simulations
- Experiment
 - Centro de Laseres Pulsados Ultracortos CLPU
 - Experimental setup
 - Measumentts
 - Phase Contrast Imaging

Introduction

Eupraxia

- First plasma accelerator based user facility EuAPS
- EuPRAXIA Advanced Photon Sources project
- Collaboration
 - INFN
 - CNR
 - University of Tor Vergata
- Objective: development a compact photon sources to drive plasma accelerators and the setup of ultra-compact, high performing X ray and particle sources for users

Betatron Radiation

Year

Why Betatron Radiation?

Applications

Imaging

- Phase contrast imaging PCI PCI edge illumination (PCI-EI) PCI Beam tracking (PCI-BT)

Spectroscopy

- **Xray absorption XAS**
 - XAŃES
- **EXASF**

Ultrafast Studies

Pump-probe experiment •

Wenz et al. Nature communications 2015 Bo Guo et al. Scientific reports 2019

F. Dorchies et al. Structural dynamics 2023

Plasma acceleration

Credits: C. Joshi, UCLA

Plasma acceleration

Credits: C. Joshi, UCLA

Plasma acceleration

Credits: C. Joshi, UCLA

Strong longitudinal and transverse force

Strong longitudinal and transverse force

$$E_{z}[V/m] = \frac{m_{e}c\omega_{p}\sqrt{a_{0}}}{e} \approx GV/m$$
$$E_{r}[V/m] = \frac{m_{e}\omega_{p}^{2}r}{2e}$$

Betatron radiation

Ion bubble

Electron sheath

Trapped electron

F.Albert et al. "Laser wakefield accelerator based light sources: Potential applications and Requirements ", Plasma Phys. Control. Fusion

/ Laser pulse

- collimated beam of X-ray
- spatially coherent
- time duration in the femtosecond range
- energy in the keV range

-02

 $x(t) \simeq x_0 \cos\left(\omega_\beta t + \phi_x\right)$

00

-0.4

Betatron x-ray beam

-0.6

10-20 micrometers

The period and amplitude of betatron oscillations stabilize near the maximum energy gain

-0.8

-1.0

-2

-3

-4

Corde, Sébastien, et al. "Femtosecond x rays from laser-plasma accelerators." Reviews of Modern Physics 85.1 (2013): 1.

Asymptotic limit spectrum

$$\left.\frac{d^2I}{d\omega d\Omega}\right|_{\theta=0}\simeq N_{\beta}\frac{3e^2}{2\pi^3\epsilon_0 c}\gamma^2\zeta^2\mathcal{K}^2_{2/3}(\zeta)$$

How does the spectrum change for:

Ec = critical energy

The radiation at the detector is the sum of different contribution:

- Radiation of Electron with different energies
- Radiation of electron with different amplitude of oscillation

Study of the spectra (no asymptotic limit) Different radius

Sum of contribution

Sum of contribution

Sum of contribution

Particle in cell simulations

Simulations model the interaction between charged particles and electromagnetic fields, commonly used in plasma physics and accelerator studies

FBPIC-simulation

Electron density evolution: Bubble formation – Self-injection – electron oscillation - recombination

Result of simulations

Energy distribution PIC

Synchrad

Experimental campain: LWFA experiment and characterization of betatron radiation

Experimental campaign

Laser system

Laser Vega II parameter used

	Peak Power	Energy/shot	pulse	Rep.Rate	Central @
VEGA II	~200 TW	~4 J	~30 fs	10 Hz	800 nm

Vacuum chamber of the experiment

Parameter of the experiment

gas pressure

30 bar

Vacuum chamber of the experiment

Gas density measurment

Radial coordinate (um)

0 1000 2000 3000 4000

-4000 -3000 -2000 -1000

Parameter of the experiment

Laser wavelength	800 nm
w_0	$21.3\pm0.3\mu\mathrm{m}$
z_R	$1.8 \pm 0.1 \mathrm{mm}$
au	$27 \pm 1 \mathrm{fs}$
E	$4.0 \pm 0.5 \mathrm{J}$
Р	$139 \pm 21 \mathrm{TW}$
I_0	$(1.9\pm0.4) imes10^{19}{ m W/cm^2}$
<i>a</i> ₀	3.0 ± 0.3
Plasma electron density	$3-4 \ (10^{18} \ \mathrm{cm}^{-3})$
gas pressure	30 bar

Vacum chamber of the experiment

Parameter of the experiment

Laser wavelength	800 nm
w_0	$21.3\pm0.3\mu\mathrm{m}$
z_R	$1.8 \pm 0.1 \mathrm{mm}$
au	$27 \pm 1 \mathrm{fs}$
E	$4.0 \pm 0.5 \mathrm{J}$
Р	$139 \pm 21 \mathrm{TW}$
I_0	$(1.9\pm0.4) imes10^{19}{ m W/cm^2}$
<i>a</i> ₀	3.0 ± 0.3
Plasma electron density	$3-4 \ (10^{18} \ \mathrm{cm}^{-3})$
gas pressure	30 bar

Dipole calibration for energy measurements

Vacuum chamber of the experiment

Parameter of the experiment

Laser wavelength	800 nm
w_0	$21.3\pm0.3\mu\mathrm{m}$
z_R	$1.8 \pm 0.1 \mathrm{mm}$
au	$27 \pm 1 \mathrm{fs}$
E	$4.0 \pm 0.5 \mathrm{J}$
Р	$139 \pm 21 \mathrm{TW}$
I_0	$(1.9\pm0.4) imes10^{19}{ m W/cm^2}$
<i>a</i> ₀	3.0 ± 0.3
Plasma electron density	$3-4 \ (10^{18} \ \mathrm{cm}^{-3})$
gas pressure	30 bar

Gas density measurment Dipole calibration for energy measurements

Lanex calibration and post-processing of images

Electron spotsize measurements

Simulation

Lanex screen

Data

Shot n.	$\theta_x \operatorname{mrad}$	θ_y mrad	σ_x mrad	σ_y mrad
Shot 1	14.000	7.200	7.000	3.600
Shot 2	10.360	9.400	5.180	4.700
Shot 3	12.180	7.400	6.090	3.700
Shot 4	10.660	6.200	5.330	3.100
Shot 5	8.344	8.386	4.172	4.193
Shot 6	7.720	9.260	3.860	4.630
Shot 7	10.036	8.614	5.018	4.307
Shot 8	7.862	7.800	3.931	3.900
Shot 9	7.862	8.608	3.931	4.304
Shot 10	7.440	8.054	3.720	4.027
Mean	9.6464	8.0922	4.8232	4.0461

Divergence

Electron energy measurements

Shot n.	$\langle E \rangle$ (MeV)	σ_E (MeV)	
Shot 1	160.47	59.58	
Shot 2	229.88	78.49	
Shot 3	184.2	56.32	
Shot 4	194.73	77.17	
Shot 5	144.29	42.37	
Shot 6	215.23	120.18	
Shot 7	197.82	68.48	
Shot 8	189.16	74.42	
Shot 9	193.17	109.68	
Shot 10	157.83	308.23	
Average	186.59	99.08	

$$\langle \gamma \rangle = \frac{\langle E \rangle}{E_0} = 364.19 \qquad \Longrightarrow \qquad r_\beta = 0.88 \,\mu\mathrm{m}$$

Energy spectrum (RAW data)

Energy spectrum (post processed data)

Spectra reconstruction

Using: Grazing Incidence Monochromator

Measurements of EUV spectrum

Using: Single photon counting

Measurements of X ray spectrum

Grazing Incidence Monochromator

1) Alignment

3) Calibration for EUV with mercury lamp and Zemax

2) Slit measurement

Single photon counting

Photons directly hit the CCD camera.

The number of photons must be very low, and the pixels that will be hit will have a very low density

Single pixel illuminated

Calibration

Two sources were used: Fe55 and Cu

The intensity histogram is compared with the typical emission line

Calibration curve for the CCD camera

Spectra reconstruction

Plasma - Grating Al filter - CCD

EUV spectrum

X ray spectrum

Spectra reconstruction EUV + X

Merging of the two part of the spectra using the asymptotic equation

$$\left. \frac{d^2 I}{d\omega d\Omega} \right|_{\theta=0} \simeq N_{\beta} \frac{3e^2}{2\pi^3 \varepsilon_0 c} \gamma^2 \zeta^2 \mathcal{K}_{2/3}^2(\zeta)$$

Possible errors in the evaluation of the energy, the amplitude of oscillation or in the deconvolution

Parameter	value
n_e	$4 \times 10^{18} {\rm cm}^{-3}$
γ	364.19
θ	$12.52\mathrm{mrad}$
r_{eta}	$0.88\mu{ m m}$
E	$186.59\pm20\mathrm{MeV}$
σ_E	$99.08 \pm \text{MeV}$
E_c	$2.3\mathrm{keV}$

Magnification

$$M = \frac{Z_3}{Z_1} = 3$$

Conclusion

- Introduced the EuAPS project, outlining its objectives and significance.
- Provided an overview of the Laser Wakefield Acceleration (LWFA) theory.
- Explored the theory of betatron radiation, emphasizing key parameters such as electron density, electron energy, and oscillation radius, which define the betatron strength parameter.
- Analyzed how variations in electron energy and oscillation amplitude influence the shape of the radiation spectra.
- Presented simulations conducted with FBPIC and Synchrad.
- Described the experimental setup and results from the CLPU facility in Spain.

