

Study and characterization of betatron radiation source from Laser Wakefield Accelerator

Daniele Francescone

daniele.francescone@uniroma1.it

XXXVII PhD School in Accelerator Physics

University of Rome "Sapienza"

Supervisors: Prof. Enrica Chiadroni Dr. Giancarlo Gatti

Outline

- Introduction
	- Eupraxia/Eupas
- Theory
	- Plasma acceleration
	- Betatron radiation
	- Equation of motion
	- Calculated radiated spectrum
- Simulation
	- PIC simulations
- Experiment
	- Centro de Laseres Pulsados Ultracortos CLPU
	- Experimental setup
	- Measumentts
	- Phase Contrast Imaging

Introduction

Eupraxia

- *First plasma accelerator based user facility EuAPS*
- *EuPRAXIA Advanced Photon Sources project*
- *Collaboration*
	- INFN
	- CNR
	- University of Tor Vergata
- *Objective: development a compact photon sources to drive plasma accelerators and the setup of ultra-compact, high performing X ray and particle sources for users*

Betatron Radiation

Year

Why Betatron Radiation?

Applications

Imaging

- **Phase contrast imaging PCI**
- **PCI edge illumination (PCI-EI)**
- **PCI Beam tracking (PCI-BT)**

Spectroscopy

- **Xray absorption XAS**
- **XANES**
- **EXASF**

Ultrafast Studies

• **Pump-probe experiment**

Wenz *et al.* Nature communications 2015 Bo Guo *et al.* Scientific reports 2019

F. Dorchies et al. Structural dynamics 2023

Plasma acceleration

Credits: C. Joshi, UCLA

Plasma acceleration

Credits: C. Joshi, UCLA

Plasma acceleration

Credits: C. Joshi, UCLA

Strong longitudinal and transverse force

Strong longitudinal and transverse force

$$
E_z[V/m] = \frac{m_e c \omega_p \sqrt{a_0}}{e}
$$

$$
E_r[V/m] = \frac{m_e \omega_p^2 r}{2e}
$$
 \approx *GV/m*

Betatron radiation $\frac{1}{2}$ F.Albert et al. "Laser wakefield accelerator based light sources: Potential applications and Requirements ", Plasma Phys. Control. Fusion

Ion bubble

Electron sheath

- **collimated beam of X-ray**
- **spatially coherent**
- **time duration in the femtosecond range**
- **energy in the keV range**

 -0.2

 $x(t) \simeq x_0 \cos{(\omega_{\beta} t + \phi_x)}$

 -0.4

 $0⁰$

Betatron x-ray beam

 -0.6

10-20 micrometers

The period and amplitude of betatron oscillations stabilize near the maximum energy gain

 -0.8

 -2

 -3

 -4

 -1.0

Corde, Sébastien, et al. "Femtosecond x rays from laser-plasma accelerators." *Reviews of Modern Physics* 85.1 (2013): 1.

Asymptotic limit spectrum

$$
\left.\frac{d^2I}{d\omega d\Omega}\right|_{\theta=0}\simeq N_\beta\frac{3e^2}{2\pi^3\epsilon_0c}\gamma^2\zeta^2\mathcal{K}_{2/3}^2(\zeta)
$$

How does the spectrum change for:

Ec = critical energy

The radiation at the detector is the sum of different contribution:

- Radiation of Electron with different energies
- Radiation of electron with different amplitude of oscillation

Study of the spectra (no asymptotic limit) Different radius Sum of contribution

Sum of contribution

Sum of contribution

 $\frac{d^2I}{d\omega\Omega}(\theta=0)=\sum_{n=1}^{\infty}\frac{e^2}{\pi\epsilon_0c}\frac{\omega}{\omega_n}\frac{\gamma^2N_{\beta}^2F_nR_n}{1+K_{\beta}^2/2},$ Considering a Gaussian bunch around the axis $\pmb{\sigma_r}$ $\frac{d^2I}{d\omega d\Omega}\bigg|_{\theta=0} = \sum_{n=1}^{\infty} f(r) \sum_{n=1}^{\infty} \frac{e^2\omega}{\pi \epsilon_0 c \omega_n(r)} \frac{\gamma^2 N_{\beta}^2 F_n(r) R_n(r)}{1+K_{\beta}(r)^2/2}$

Considering a different values of energies

Particle in cell simulations

Simulations model the interaction between charged particles and electromagnetic fields, commonly used in plasma physics and accelerator studies

FBPIC-simulation

Electron density evolution: **Bubble formation** – **Self-injection** – **electron oscillation - recombination**

Result of simulations

Energy distribution PIC

Synchrad

Experimental campain: LWFA experiment and characterization of betatron radiation

Experimental campaign

Laser system Phase I-20 TW Phase II - 200 TW Phase III - 1 PW 22 mJ 200 mJ 25 mJ 700 mJ 3 mJ Multi-pass 500 mJ $2.5J$ Pulse picker Amplifier Pulse picker Pockels cell Fast shutter 4 passes Pockels cell Fast shutte Propulse + Fast shutter Multi-pass Multi-pass amplifier amplifier reflection 4 passes Pockels cell 2 Titan 3.5 J Back Multi-pass reflection Pulse amplifier Pockels cell compressor 8 Propulse +

Deformable

mirror

Pulse

6 J, 30 fs
10 Hz

compressor

Multi-pass amplifier 3 passes

12 Titan 10 J

30 J, 30 fs

1 Hz

45.

Pulse compressor

Laser Vega II parameter used

Front

end

Propulse

600 mJ, 30 fs

10 Hz

Vacuum chamber of the experiment

Parameter of the experiment

Vacuum chamber of the experiment

Parameter of the experiment

Vacum chamber of the experiment

Parameter of the experiment

Vacuum chamber of the experiment

Parameter of the experiment

Gas density measurment 2.5 \overrightarrow{F} $1,5$ mm ar density $\left(\text{cm}^{-3}\right)$ 0.5 -4000 -3000 -2000 -1000 1000 2000 3000 Radial coordinate (um)

Dipole calibration for energy measurements

Lanex calibration and post-processing of images

Electron spotsize measurements

Lanex screen

Data

Divergence

Electron energy measurements Energy spectrum (RAW data)

$$
\langle \gamma \rangle = \frac{\langle E \rangle}{E_0} = 364.19 \qquad \Longrightarrow \qquad r_\beta = 0.88 \, \mu\text{m}
$$

Energy spectrum (post processed data)

Spectra reconstruction

Using: Grazing Incidence Monochromator Using: Single photon counting

Measurements of EUV spectrum Measurements of X ray spectrum

Grazing Incidence Monochromator

1) Alignment

3) Calibration for EUV with mercury lamp and Zemax

2) Slit measurement

Single photon counting

Photons directly hit the CCD camera.

The number of photons must be very low, and the pixels that will be hit will have a very low density

Single pixel illuminated

Calibration

Two sources were used: Fe55 and Cu

The intensity histogram is compared with the typical emission line

Calibration curve for the CCD camera

Spectra reconstruction

Plasma Grating Al filter CCD

EUV spectrum **X** ray spectrum

Spectra reconstruction EUV + X

Merging of the two part of the spectra using the asymptotic equation

$$
\left.\frac{d^2I}{d\omega d\Omega}\right|_{\theta=0}\simeq N_\beta\frac{3e^2}{2\pi^3\varepsilon_0c}\gamma^2\zeta^2\mathcal{K}_{2/3}^2(\zeta)
$$

Possible errors in the evaluation of the energy, the amplitude of oscillation or in the deconvolution

Magnification $M = \frac{23}{7} = 3$

Conclusion

- Introduced the EuAPS project, outlining its objectives and significance.
- Provided an overview of the Laser Wakefield Acceleration (LWFA) theory.
- Explored the theory of betatron radiation, emphasizing key parameters such as electron density, electron energy, and oscillation radius, which define the betatron strength parameter.
- Analyzed how variations in electron energy and oscillation amplitude influence the shape of the radiation spectra.
- Presented simulations conducted with FBPIC and Synchrad.
- Described the experimental setup and results from the CLPU facility in Spain.

