Copper cleaning

Cleaning Procedure

- The CUPID/COSINUS collaboration uses:
- Ultrasonic bath with 1% acid soap (Elma clean 60, or other soaps acidic....) for at least 20 minutes.
- Washing with 10% HNO₃ and 1% H_2O_2 solution for 1 hour (takes off about 7/10 um). To shorten the time we can increase H_2O_2
- The use **nitric acid**, because citric acid needs the addition of a lot of H_2O_2 to make it work; - Washing with 1% citric acid solution and 0.5% H₂O₂ for 15 seconds;
- Bath with demineralized water for 15 seconds.
- Washing under running (demineralized) water to remove the remaining traces of acid.
- Drying with clean room cloth
- Further drying with clean chamber cloth and nitrogen flow under laminar flow hood

Cleaning Procedure

- A similar protocol was used to clean the copper before the ICPMS measurements

Sample list

Cu piece CSN CARL SCHREIBER -

Sample "Cu L"	Weight [g]	Sample treatment	Cu dissolved [g]	Note
Starting	14.10			
After Etching n 1	11.05	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	3.05	Waste
After Etching n 2	8.13	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	2.92	Measured
After Etching n 3	5.20	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	2.93	Measured
After Etching n 4	2.13	$6 \text{ mL H}_2\text{O} + 10 \text{ mL HNO}_3$	3.07	Spiked 100 ppt

Tab.1 Sample etching with HNO3

Rinse and description

Cu sample was rinsed with 5% of acid soap "Decon" in ultra-sonic bath, nitric acid and citric acid, this procedure was performed by Roberto Cerroni together with samples cleaning for gamma-ray spectroscopy.

- I think we should foresee a similar procedure to treat copper before the final assembly;
- It should be cost-affordable, but requires a small facility to be setup, chemical handling

Copper analysis with ICPMS

- They used the described procedure to clean it and measured the U and Th content

	Etching 2 Etching 3	
	$[pg * g^{-1}]$	$[pg * g^{-1}]$
Th	9 ± 3	7 ± 2
U	5 ± 2	2 ± 1

⁵⁸Co has an half life of 70 days ⁵⁴Mn has an half life of 1 year

- Upper limits on U and Th, 10 times larger than actual values

- These were the Matthias results

radionuclide concentrations:

Th-232:			
Ra-228:	< 0.38 mBq/kg	<==>	< 9.3 E-11 g/g
Th-228:	< 0.20 mBq/kg	<==>	< 4.9 E-11 g/g
U-238:			
Ra-226	< 0.44 mBq/kg	<==>	< 3.5 E-11 g/g
Th-234	< 17 mBq/kg	<==>	< 9.3 E-10 g/g
Pa-234m	< 11 mBq/kg	<==>	< 6.5 E-10 g/g
U-235:	< 0.37 mBq/kg	<==>	< 6.5 E-10 g/g
K-40:	< 3.2 mBq/kg	<==>	< 1.0 E-7 g/g
Cs-137:	< 0.14 mBq/kg		
Co-60:	< 0.12 mBq/kg	@ start	of measurement: 07-OCT-2022
Co-58:	(0.8 +- 0.1) mBq/kg	@ start	of measurement: 07-OCT-2022
Mn-54:	(0.12 +- 0.05) mBq/kg	@ start	of measurement: 07-OCT-2022