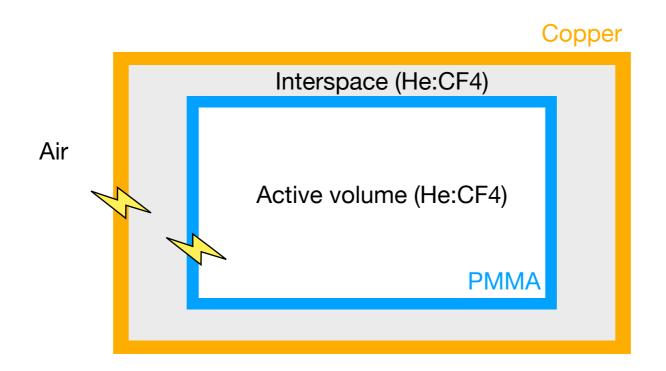
Gas System for CYGNO-04

Francesco Renga INFN Roma

About the impact of the gas system on detector and physics

Reminder

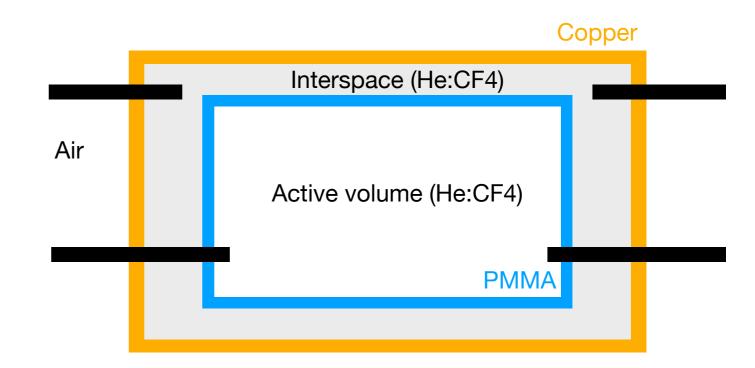

- The currently operating gas system was already designed for CYGNO-04
 - in principle, largely over-dimensioned for LIME

Reminder

- The currently operating gas system was already designed for CYGNO-04
 - in principle, largely over-dimensioned for LIME
 - in reality, we have already operated it for some periods with the maximum flows (20 I/h fresh flow and 100 I/h recirculation), and normal operations for LIME (5 I/h fresh and 20 I/h recirculation) are at 50% of the nominal CYGNO-04 flow
- The reason for operating LIME with relatively high flows is the concentration of contaminants (due to leaks)
 - total leaks in LIME + pipelines + gas system is now ~ 7 sccm
 - back-of-the-envelope calculations (with some reasonable assumptions) indicate that we need < 1 sccm leak to keep O(1 kevent/year) Radon background from the gas

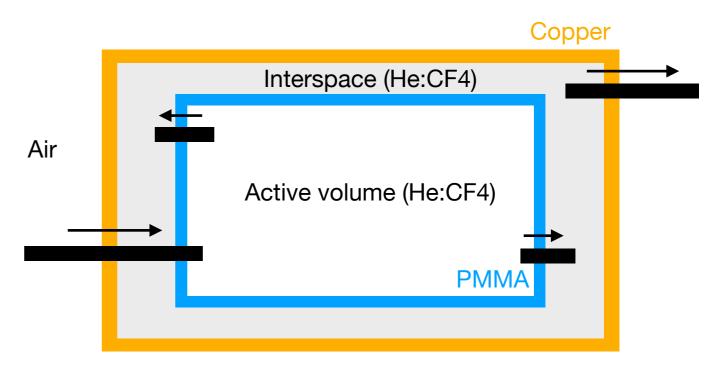
CYGNO-04 and leaks (I)

- The detector structure will be, by construction, tighter than the LIME one (better sealings)
- Thanks to the presence of an interspace between the active volume and the external atmosphere:
 - leaks through the PMMA vessel expose the active volume to a gas that is already much cleaner than air
 - air going through leaks in the Copper vessel needs to go through two vessels to reach the active volume


CYGNO-04 and leaks (I)

- Residual leaks could be present in the pipelines and inside the gas system
 - further campaigns of leak search and tests of critical elements (e.g. recirculation pump) are recommended at the end of the LIME run
 - If necessary, some components could be replaced with assistance from AirLiquide

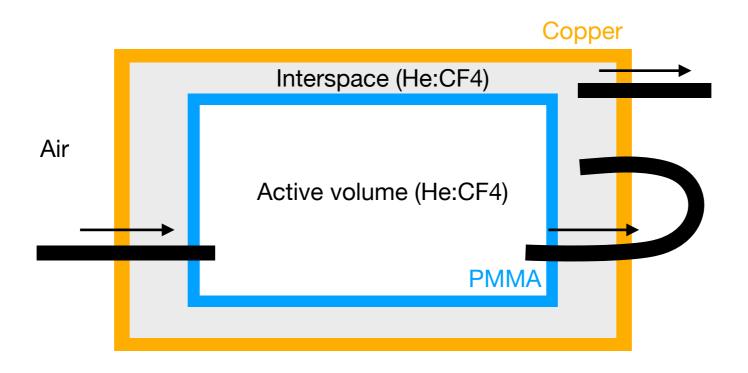
Gas system and CYGNO-04 mechanics


- In CYGNO-04, we want He:CF4 in both active volume and interspace
- Differential pressure through the PMMA vessel should be ideally zero
- Some strict limit (< mbar?) apply for the differential pressure through the Copper vessel
- Can we flow active volume and interspace with two different gas lines?

- In CYGNO-04, we want He:CF4 in both active volume and interspace
- Differential pressure through the PMMA vessel should be ideally zero
- Some strict limit (< mbar?) apply for the differential pressure through the Copper vessel
- Can we flow active volume and interspace with two different gas lines?
 - Heavy upgrade of the gas system needed (additional flowmeters, additional sensors, additional pressure control systems)

- In CYGNO-04, we want He:CF4 in both active volume and interspace
- Differential pressure through the PMMA vessel should be ideally zero
- Some strict limit (< mbar?) apply for the differential pressure through the Copper vessel
- Do we need to flow active volume and interspace with two different gas lines?

- In CYGNO-04, we want He:CF4 in both active volume and interspace
- Differential pressure through the PMMA vessel should be ideally zero
- Some strict limit (< mbar?) apply for the differential pressure through the Copper vessel
- Do we need to flow active volume and interspace with two different gas lines?
 - No, there is no real advantage (the gas in the interspace would be less clean than fresh gas, but still orders of magnitude cleaner than air)



Connection requirements

- To keep the differential pressure through the PMMA low, we need the connections to be low in impedance
- Still, we could desire a small pressure difference (a fraction of mbar)
 - "regulated" by number and length of pipes in between the two volumes
 - tests of pressure drop through pipes and connections can be easily performed in labs and are desirable

Connection requirements

- To keep the differential pressure through the PMMA low, we need the connections to be low in impedance
- Still, we could desire a small pressure difference (a fraction of mbar)
 - "regulated" by number and length of pipes in between the two volumes
 - tests of pressure drop through pipes and connections can be easily performed in labs and are desirable
 - one could even consider a pressure drop "tunable" on site

Pressure control

At present, we control the absolute pressure inside LIME, but we regulate the set point so that the differential pressure against the atmosphere is always between +2 and +8 mbar.

- To do that, a cross-calibration between sensors was performed, whose stability was never tested
- Typical short-time fluctuations of the atmospheric pressure are ~ 3 mbar
- Without an upgrade of the system, pressure control within less than a few mbar has to be tested
 - To go below 1 mbar, we could need to switch to **differential pressure control** (change of sensors and firmware)