Proposal for the calibrations of CYGN004

Xenon /Darkside experiments uses gaseous 83mKr decay for calibration

Kr is produced in ⁸³Rb decay. Kr is diffusing into the experimental volume

Kr decays by gamma and Internal Conversion

Monochromatic gamma and **electrons** from the sources.

Increase of monochromatics electrons (30 keV and 9 keV) (on top of Compton electrons) compared to same energy gamma ray source.

Half life of Kr is about 2hours (it disappears quickly)

Can be procured from **Nuclear Physics Institute of the Czech Academy of Sciences**

(20 kBq costs about 6k euro, can be shared with Ptolemy)

Ptolemy RF antenna setup at LNGS

Figure 3.3. Photo of the Krypton source. The second valve opens a tap permitting the injection of the 83m Kr gas. In the background the magnet is visible, too. The black arrow indicates the direction of the magnetic field inside the permanent magnet.

Rb has an half life of 3 months

Produces 83Kr that emits 32 keV and 9.4 keV

photons 155 ns apart with an half life

of about 2 hours

 $1.04 \text{ ps} \frac{(3/2)}{5/2}$ $6.2\,\mathrm{ps}$

stable 9/2+

- Rb has an half life of 3 months
- Produces 83Kr that emits 32 keV and 9.4 keV
- photons 155 ns apart with an half life
- of about 2 hours
- By Internal Conversion, these will produce electrons
- The 9.4 keV photon provides mainly a 7.5 electron (90%) and electrons of 9.1 keV (10%), while the other makes 17.8 keV (25%) and around 30 keV (75%)

Line	Energy	ICC 4	Intensity Ice, ^b per	Natural line (eV) [32]	
Line	E_{ce} (eV)	ICC,	decay (%)		
γ 9405.7					
L ₁	7481.1(10)	12.1(1)	66.8(13)	3.75(93)	3
L ₂	7673.7(6)	1.34(1)	7.47(15)	1.25(25)	1.
L ₃	7726.4(6)	1.03(1)	5.70(11)	1.19(24)	1.
M_1	9112.9(7)	2.00(2)	10.8(3)	3.5(4)	3.
M ₂	9183.5(6)	0.220(2)	1.19(3)	1.6(2)	0.
M ₃	9191.1(6)	0.166(2)	0.897(21)	1.1(1)	1
M_4	9310.6(6)	0.00324(3)	0.0175(4)	0.07(2)	_
M ₅	9311.9(6)	0.00290(3)	0.0156(4)	0.07(2)	_
N_1	9378.1(6)	0.247(2)	1.11(3)	0.40(4)	0
N ₂	9391.0(6)	0.0197(2)	0.0881(21)	—	0
N_3	9391.6(6)	0.0146(1)	0.0655(16)	_	0
γ 32151.6					
K	17824.2(5)	478.0(50)	24.8(5)	2.71(20)	2
L ₁	30226.8(9)	31.7(3)	1.56(2)	3.75(93)	_
L_2	30419.5(5)	492.0(50)	24.3(3)	1.25(25)	1
L ₃	30472.2(5)	766.0(77)	37.8(5)	1.19(24)	1
M_1	31858.7(6)	5.19(5)	0.249(4)	3.5(4)	_
M ₂	31929.3(5)	83.7(8)	4.02(6)	1.6(2)	1
M ₃	31936.9(5)	130.0(13)	6.24(9)	1.1(1)	1.
M_4	32056.4(5)	1.31(1)	0.0628(9)	0.07(2)	_
M ₅	32057.6(5)	1.84(2)	0.0884(12)	0.07(2)	_
N_1	32123.9(5)	0.643(6)	0.0255(4)	0.40(4)	4
N_2	32136.7(5)	7.54(8)	0.300(4)	0.03, ^d	0
N ₃	32137.4(5)	11.5(1)	0.457(6)	0.03.	0

and a second second

The use of a source producing diffused interactions will allow to make a "tomography" of the response of CYGNO-04 and produce a cumulative mask to correct the response of the detector for disomogeneities in:

- Drift Field
- GEM gain
- Transfer field
- Sensor and lens

A corrective map that can then be used to correct the images of each camera;

These tests can be performed once for ever or once every long intervals, to cross check their stability;

Technically they require an inlet in the gas system to connect the Ru source;

In the pure copper there will be 14 (11 in the picture) slits, where the source will be exposed

62.5 mm apart each other

• 0 • • •

- •
 - .

.

•

In the pure copper there will be 14 (11 in the picture) slits, where the source will be exposed

62.5 mm apart each other

- Distance source sensitive volume is 190 mm
- Distance source PMMA is 101 mm
- 30 mm of PMMA
- 60 mm PMMA base to sensitive volume

Distance source - slit is 2 mm

Front view

- Distance source sensitive volume is 190 mm
- Distance source PMMA is 101 mm
- 30 mm of PMMA
- 60 mm PMMA base to sensitive volume

$$s[mm] = \frac{20 \cdot 80}{110} = 14.5 \ mm$$

500 mm

Source window Constraints - GEM view

Constrain set as PMMA window A_gas == 8mm (+ L2==110mm)

Ltot

$$\frac{A_{source}}{L_1} = \frac{A_{pmma}}{L_2} = \frac{A_{gas}}{L_{tot}} = \frac{A_{tot}}{D + L_{tot}} = R$$

$$A_source = 15mm$$

$$S_{dead} = \frac{D(800mm - A_{gas})}{4}$$

'Dead' area around 12% of the total area

D. Fiorina

Lateral view

- Distance source sensitive volume is 190 mm
- Distance source PMMA is 101 mm
- 30 mm of PMMA
- 60 mm PMMA base to sensitive volume

$$\lim_{n \to \infty} \frac{h + 170}{20}$$

- if we want b = 130 mm at half heigh (h=400mm) -> s = 4.5 mm -> we loose55% of source activity
- So a slit 4.5 x 14.5 = 62 mm² at a distance of 40 mm \rightarrow 4% of solid angle

h

2% of photons reach the gas

Source window Constraints - z view

Ltot

Constrain set as: beam aperture at detector center equal to the window pitch A_middle == 125mm

$\frac{A_{source}}{L_1} = \frac{A_{gas}}{L_{tot}} = \frac{A_{middle}}{L_{middle}} = R$

$A_source = 4.5mm$

D. Fiorina

Source window length Constraints - z view

Constrain set as: beam aperture at detector center equal to the window pitch A_middle == 125mm

$$\frac{A_{PMMA}}{L_2} = \frac{A_{middle}}{L_{middle}} = R$$

Lmiddle

$$L_{window} = 6A_{space} + A_{pmma}$$

Lwindow=402mm

Wwindow=80mm (set as constraint)

D. Fiorina

Rate estimation

Source activity estimated in 2025: 1.5MBq 1-= e μ _EFTE = 3.5cm-1 μ _HeCF4 = 0.05cm-1

$$A_{tot} = A_{gas} A_{EFTE} = 0.33$$

2- Solid angle under a rectangle

Cooper window: 4.5x15mm2 d=21mm

Solid angle fraction (2pi): 0.023

Interaction Probablity in 800mm of He/CF4 i.e. the detector 98% 3-

Expected rate around 10kHZ i.e. 2.5Hz/cm2

				uperior				
		RESENC	WARNI E OF RADIC	NG ACTIVE S	SOURCE			
$-\mu x$	Radionuclide Li Fe-55 [Activity: [T1/2 (y) = 2.58	NGS Code 154 1.89e+03 KBq	Source Cert. CO-0184612-BC-90 on 2024-09-17	60	SEALED SOURCE Radioactive contami	nation absent		
	Emissions (KeV): Electron	ns (5), Gamma (6; 7)			Half Value Layer	r (mmPb): < 1		
	Dose rate (µGy/h) (photone)	d = 10 cm 0	d = 20 cm 0	d = 50 cm U	d = 100 cm 0			
	Notes:	This						
	This sign must be exposed where the source is in use							
	Experiment and location:	2023-02-07	Sott - Gall TIR	t update 2023-02-07	Expected re-	delivery:		
	User :	Baracchini, E	lisabetta	User's signatur	re: Ala)an			
					1-			

$$\Omega = 4 \cdot rctan\left(rac{a \cdot b}{2 \cdot d \cdot \sqrt{a^2 + b^2 + 4 \cdot d^2}}
ight)$$

 $Rate = Activity \cdot A_{tot} \cdot \Omega_{fraction} \cdot P_{interaction}$

Conclusion

For the Ru source, we should foresee a inlet to inject the Kr in the gas;

For the ⁵⁵Fe, our proposal is to have:

On the COPPER

- 14 slits 62.5 mm apart each other;
- 4.5 x 14.5 mm² and 40 mm deep (the whole clean copper layer)

On the **`PMMA**

- 2 windows (1 per half volume)
- 80 x 402 mm² windows

This setup should allow 10 kHz of events (about 2 Hz/cm²)