

PMT Simulation

Luan G. M. de Carvalho

with Davide Pinci (INFN-Roma I) and Rafael A. Nóbrega (UFJF)

CYGNO Collaboration Meeting

November 27, 2024

Summary

- 1. Spectrum analysis
- 2. Noise characterization
- 3. SPE signal characterization
- 4. Digitization-PMT Simulation
- 5. Sim/data comparison
- 6. Conclusion

Spectrum analysis

Last year we faced a problem in the simulated waveforms height peak

Spectrum analysis

Last year we faced a problem in the simulated waveforms height peak

● An analysis of the spectrum was done (**Light spectrum** + **PMT Quantum Efficiency**):

Fraction of photons:

 $\frac{Area_{green_curve}}{Area_{black_curve}} = 15\%$

Was not enough to fix the problem!

We were suggested to take a look at the

Glass Transmission Spectrum

Spectrum analysis

First update of the PMT Simulation of this year

Light spectrum + **PMT Quantum Efficiency** + **Glass Transmission**

Fraction of photons:

 $\frac{Area_{green_curve}}{Area_{black_curve}} = 1.36\%$

Number of generated photons at GEM and possible photoelectrons reduced in **98.64%**

Updates in noise simulation

The new method of noise generation: Power Spectral Density

With this method it is possible to generate a noise with same **amplitude distribution** and preserve the **autocorrelation** of the real noises.

The Fourier transform of the <u>autocorrelation</u> $R_x(\tau)$ is called <u>Power Spectral Density</u> $S_x(f)$:

$$
S_x(f)=\int_{-\infty}^{\infty} R_x(\tau) e^{-2\pi i f \tau}\,d\tau
$$

The new method of noise generation: Power Spectral Density

Steps of a single noise generation

- 1. Get the Average Power Spectral Density of the real noise dataset
- 2. Introduce a phase spectrum from a uniform distribution between $-\pi$ and $+\pi$
- 3. Create the noise spectrum from Steps 1 and 2
- 4. Perform an IFFT to obtain the time-domain noise series

The noise generation for the **slow digitizer** using the old method would need a covariance matrix with size **(4000, 4000)** for **each PMT.** Size around **128 MB** for each cov. matrix Four cov matrices would be needed

 $f > 0 \Rightarrow N(f) = \sqrt{\frac{\text{PSD}_{\text{noise}}(f)}{2}} \times e^{j\varphi(f)}$ $f < 0 \Rightarrow N(f) = \sqrt{\frac{\text{PSD}_{\text{noise}}(-f)}{2}} \times e^{-j\varphi(f)}$ $f = 0 \Rightarrow N(0) = DC$ $n(t) = \text{Re} \{ \text{IFT} [N(f)] \}$ L. Smaini, *RF Analog Impairments Modeling for Communication Systems Simulation: Application to OFDM-based Transceivers*. Marvell Switzerland.

The new method of noise generation: Power Spectral Density

Average Power Spectral Density of the real noise dataset for each PMT/channel

The new method of noise generation: Power Spectral Density

Average Power Spectral Density of the real noise dataset for each PMT/channel

Amplitude distribution comparison

Proposed model for the SPE signal

Exponentially modified gaussian PDF

$$
f(x;\mu;\sigma;\lambda)=\ \frac{\lambda}{2}\mathrm{exp}(\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x))\ \mathrm{erfc}(\frac{\mu+\lambda\sigma^2-x}{\sqrt{2}\sigma})
$$

 μ = mean (arrival times) \mathcal{C} $V(r)$ σ = standard deviation (width) λ = exponential decay rate Figure 9.20 Simple parallel RC circuit representing anode circuit **Rise time** -> Gaussian part Knoll, G. F. (2010). Radiation Detection and Measurement (4th ed.)**Fall time** -> Gaussian +**Exponential** part

Characterization procedure

Histograms

Histograms

We also know:

$$
Q=G\cdot N\cdot (-e)\\
$$

$$
N=1\\
$$

$$
e=1.6\ \times 10^{-19}\ C
$$

Replacing Q by the found SPE charge:

$$
-0.197\ \times 10^{-12} = G \cdot 1 \cdot (-1.6\ \times 10^{-19})\\ \boxed{G = 1.23 \times 10^6}
$$

SPE Dataset: …/PMT-Test-270922/BA1642_single_photoelectron —> C4--1642-**900V**-A3

Single photoelectron signal model

PMT R7378A 900 V of supply voltage

Waveforms quantization

Until this year we were not applying quantization to the simulated waveforms

Amplitude discretization of a continuous signal

$$
Resolution = \frac{1}{2^{12}} = \frac{1}{4096}V
$$

Waveforms quantization

Until this year we were not applying quantization to the simulated waveforms

Example of the quantization effect on a slow digitizer simulated noise

Digitization - PMT Simulation

Simulation example 1 Image + PMT Waveforms

6 keV event simulation

Fast digitizer

Slow digitizer

Digitization - PMT Simulation

PMT₂

 $0a$ -0.04

 $\frac{8000}{\text{Time (ns)}}$

10000 12000 1400

 2000 4000 6000

3D analysis (x, y, z) - 55Fe dataset

Results in function of the R distance (spot at GEM plane to PMT)

 $Z_{PMT} = 186$ mm *PMT*₁: $X_1 = 42$ *mm*, $Y_1 = 312$ *mm* PMT_{2} : $X_{2} = 312$ mm, $Y_{2} = 312$ mm PMT_{1} : $X_{2} = 312$ mm, $Y_{2} = 42$ mm PMT_{A} : X_{A} = 42 mm, Y_{A} = 42 mm x_{0} , y_{0} = spot position $R = \sqrt{(X_{pMT} - x_0)^2 + (Y_{pMT} - y_0)^2 + (Z_{pMT} - z_0)^2}$ $Z_0 = 0$ (GEM plane)

3D analysis (x, y, z) - 55Fe dataset

Parameters to be verified

3D analysis (x, y, z) - 55Fe dataset Scatter Plot - **Step 1 = 50 mm**

3D analysis (x, y, z) - 55Fe dataset Scatter Plot - **Step 4 = 351 mm**

3D analysis (x, y, z) - 55Fe dataset

Conclusion

Completed tasks

- Analysis of spectrum (glass transmission, PMT quantum efficiency)
- Photon propagation
- PMT Signal characterization
	- SPE signal characterization
	- Noise characterization
		- Characterization for each PMT/channel
- Simulation for **fast** and **slow** digitizers
- Sim/data comparison
	- 55Fe dataset

Future Plans

- Find exponential dispersion to fix full width
- Translate PMT Simulation code: Python \rightarrow C++
- Simulate different tracks with different energies
	- 241-Am data
- Keep tuning the parameters of the simulation