

Image signal selection for trigger

Igor Pains

with Rafael Nóbrega

WP2 Analysis - 28/11/2024

Contents

Introduction

- Motivation
- What was done

Algorithms

1

2

3

4

5

- Filtering based trigger

- CNN based trigger

Development

- Datasets
- CNN training

Results

- Detection performance
- Reconstruction
- Processing time

Conclusions

- Conclusions
- Next steps

1. Introduction

Motivation

- One major challenge for the CYGNO experiment in the long term will be to store and analyse all the data produced by the detector.
 - Each run containing **400 images** needs **~1.36 Gb** to be stored (Fusion, compressed .mid).
 - A **single day of acquisition** may produce **~266 Gb** of data (Run5 on 26th september).
- The motivation of this work was to study algorithms capable of **distinguishing images** containing a **signal of interest** and **background events**.
- An algorithm capable of doing this task was called **image based trigger algorithm.**

What was done

- Two algorithms proposed:
 - **Filtering** based trigger.
 - **CNN** based trigger.
- A comparison analysis was done using these two algorithms:
 - Trigger **detection performance**.
 - Reconstruction comparison.
 - Processing time.

2. Algorithms

Filtering based trigger

selected based on training data

CNN based trigger

CNN based trigger

CNN architecture

3. Development

Datasets

• Training:

- Noise dataset: 600 images from pedestals runs (Run4 underground).
- ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to pedestal runs (different from noise dataset).

Validation:

- Noise dataset: 200 images from pedestal runs.
- ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.

• Test:

• Same configuration as validation.

Datasets

 The signal simulation was divided considering the balance in ADC counts across the three datasets.

• This prevents the **data split** from **influencing** the results.

CNN training

- Both ER and NR were used together during the CNN training using data augmentation.
 - The signal was **randomly rotated** and **placed** in a position among the noise.
- 4800 images with 288x288 pixels were used on CNN training and 1600 on validation.
 - Every signal from the split was **used twice.**
 - The **noise patch** used was always **different.**
- The best result was achieved by using 0.5 keV signals on training.
 - 0.25 keVs signals generally led to overfitting.

4. Results

Detection performance

- Applying the trigger algorithms on the test dataset results in **two distributions.**
 - The Gaussian filter method output is a correlation.
 - The **CNN output** is a **probability** (more interpretable)
- These distributions may be used on **ROC curves** to evaluate the results.
 - All possible thresholds are used to measure the true positive rate **(TPR)** and false positive rate **(FPR).**
 - **TPR** is analogue to **signal detection.**
 - **FPR** is analogue to **false alarm.**

Detection performance

- The Gaussian filter may detect ~80% of the 0.25 keV NR and ER events with a ~10% false alarm.
- The CNN may detect ~80% of the 0.25 keV NR and ER events with a ~0.5% false alarm.
- Both methods outperform the reconstruction in detecting 0.25 keV events.
- All methods can easily detect energies above 0.5 keV.

Reconstruction

- The reconstruction code found **68 noise** clusters on **55 images (~27.5% false** alarm) on the test dataset.
- The reconstruction detected **131 NR** (~65.5% detection) and **135 ER (~67.5%** detection) events with **0.25 keV**.
- All events found by the reconstruction were also detected by the trigger algorithms.

Processing time

- The Gaussian filter and CNN need ~0.25 and 0.55 seconds to analyse one image using CPU¹ respectively.
- The **Gaussian filter** and **CNN** need ~0.02 and **0.2 seconds** to analyse one image using **GPU**² respectively.
- A higher detection performance needs to be compensated with a slower processing time.

¹CPU: Notebook01 cloud ²GPU: Tesla T4 google collab

5. Conclusions

Conclusions

- The proposed algorithms may **detect ~80%** of the **0.25 keV NR** and **ER simulated events** with a **small false alarm** ratio.
 - Gaussian filter with 10% false alarm (20 out of 200 pedestal images misclassified).
 - CNN with 0.5% false alarm (1 out of 200 pedestal images misclassified).
- The proposed algorithms may **detect ~100%** of the events **above 0.5 keV**.
- The **CNN needs a GPU** to have a **proper margin time** to analyse an image considering the current exposure time, whereas the **Gaussian filter** may be implemented with a **CPU**.
- All the events detected by the reconstruction were easily detected by the proposed algorithms.

Next steps

- Study methods to simplify the CNN model (on going).
 - Bit reduction, weight combination, pruning and vectorization.
- Test the CNN on the DAQ machine.
 - GPU: Quadro RTX 5000.
- Test popular CNN architectures such as AlexNet, GoogleLeNet, Unet with adaptations.
- Three possible approaches for the trigger:
 - Save the entire image.
 - Save subparts of the images.
 - Retrain the CNN to reject also natural radioactivity.

Next steps

Thank you

Credits

This is where you give credit to the ones who are part of this project. Did you like the resources on this template? Get them for **free** at our other websites. Presentation template by <u>Slidesgo</u>

Icons by <u>Flaticon</u>

Images & infographics by <u>Freepik</u>

Author introduction slide photo created by **katemangostar** - Freepik.com

Big image slide photo created by **jcomp** - Freepik.com

Text & Image slide photo created by **rawpixel.com** - Freepik.com

Text & Image slide photo created by **Freepik**

Backup

CNN architecture

- The input shape of the CNN limits the number of convolutional and max-pooling layers that can be used.
 - An image with 288 (2⁵.3²) pixels may use up to 7 (5+2) layers with regular max-pooling.
 - Custom max-pooling layers may be used to increase the number of layers up to 9.

- ▷ Four CNN architectures were selected (number of layers from 6 to 9).
 - The bayesian optimization was used during training.
 - The approach is to select a range of possible hyperparameters (number of filters in each conv layer, neurons on dense layer, etc) and the method will find the optimal values.

CNN training

CNN 0.5 keV

