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1. Introduction




Motivation

One major challenge for the CYGNO experiment in the long term will be to store

and analyse all the data produced by the detector.
o Each run containing 400 images needs ~1.36 Gb to be stored (Fusion, compressed .mid).

o Asingle day of acquisition may produce ~266 Gb of data (Run5 on 26 september).

The motivation of this work was to study algorithms capable of distinguishing
images containing a signal of interest and background events.

An algorithm capable of doing this task was called image based trigger algorithm.



What was done

e Two algorithms proposed:
o Filtering based trigger.
o CNN based trigger.

e A comparison analysis was done using these two algorithms:
o Trigger detection performance.
o Reconstruction comparison.
o Processing time.



2. Algorithms
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CNN architecture
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e Feature extraction: Looking for features while reducing the size of the

image.
e Binary classification: Combine all the features with neurons in the FCL and

classify the input image.
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3. Development




Datasets

Training:
o Noise dataset: 600 images from pedestals runs (Run4 underground).
o ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to
pedestal runs (different from noise dataset).

Validation:

o Noise dataset: 200 images from pedestal runs.
o ERand NRsignal simulation: 200 images each containing 0.25-1 keV signals.

Test:
o Same configuration as validation.
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Datasets
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CNN training

Both ER and NR were used together
during the CNN training using data
augmentation.

o The signal was randomly rotated and
placed in a position among the noise.

4800 images with 288x288 pixels were

used on CNN training and 1600 on

validation.

o Everysignal from the split was used twice.

o The noise patch used was always
different.

The best result was achieved by using 0.5

keV signals on training.
o 0.25 keVs signals generally led to
overfitting.

Signal
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4. Results
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Applying the trigger algorithms on the

test dataset results in two distributions.
o The Gaussian Filter method output is a
correlation.
o The CNN output is a probability (more
interpretable) o ¢ alik
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Detection performance

The Gaussian Filter may detect ~80% of
the 0.25 keV NR and ER events with a
~10% Ffalse alarm.

The CNN may detect ~80% of the 0.25
keV NR and ER events with a ~0.5% Ffalse
alarm.

Both methods  outperform  the
reconstruction in detecting 0.25 keV
events.

All methods can easily detect energies
above 0.5 keV.
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NR - 0.25 keV
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e The reconstruction code found 68 noise
clusters on 55 images (~27.5% False
alarm) on the test dataset.

ER - 0.25 keV

e The reconstruction detected 131 NR
(~65.5% detection) and 135 ER (~67.5%
detection) events with 0.25 keV.
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e All events found by the reconstruction
were also detected by the trigger
algorithms.
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Time performance CPU
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Processing time

e The Gaussian filter and CNN need ~0.25
and 0.55 seconds to analyse one image
using CPU? respectively.

Gaussian filter CNN
Time performance GPU

e The Gaussian filter and CNN need ~0.02
and 0.2 seconds to analyse one image
using GPU? respectively.

e A higher detection performance needs
to be compensated with a slower
processing time.
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5. Conclusions




Conclusions

The proposed algorithms may detect ~80% of the 0.25 keV NR and ER simulated

events with a small False alarm ratio.

o Gaussian filter with 10% False alarm (20 out of 200 pedestal images misclassified).
o CNN with 0.5% False alarm (1 out of 200 pedestal images misclassified).

The proposed algorithms may detect ~100% of the events above 0.5 keV.

The CNN needs a GPU to have a proper margin time to analyse an image
considering the current exposure time, whereas the Gaussian Filter may be
implemented with a CPU.

All the events detected by the reconstruction were easily detected by the
proposed algorithms.
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NeXxt steps

Study methods to simplify the CNN model (on going).
o Bitreduction, weight combination, pruning and vectorization.

Test the CNN on the DAQ machine.
o GPU: Quadro RTX 5000.

Test popular CNN architectures such as AlexNet, GoogleLeNet, Unet with
adaptations.

Three possible approaches for the trigger:
o Save the entire image.
o Save subparts of the images.
o Retrain the CNN to reject also natural radioactivity.
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Next steps
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CNN architecture

>  The input shape of the CNN limits the number of convolutional and
max-pooling layers that can be used.
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An image with 288 (2°.3%) pixels may use up to 7 (5+2) layers with regular
max-pooling.

Custom max-pooling layers may be used to increase the number of layers up to 9.

> Four CNN architectures were selected (number of layers from 6 to 9).
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The bayesian optimization was used during training.

The approach is to select a range of possible hyperparameters (number of filters in
each conv layer, neurons on dense layer, etc) and the method will find the optimal
values.



CNN training
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