Luca Zappaterra & Davide Pinci

Analysis of low energy Nuclear Recoils' from AmBe neutron source

Data taking setup

12

 $\overline{2}$

AmBe excess selection

AmBe excess selection (zoom)

L. Zappaterra, 28th October 2024

AmBe excess selection - Some samples

L. Zappaterra, 28th October 2024

5

Selected clusters Energy/Density spectra

Directionality evaluation

- Principal Component Analysis (PCA) with 2 parameters on the most intense part of the clusters to extract the clusters' axes.
- Use always the **biggest eigenvector** to compute the angle with respect to the \hat{x} direction.
- Impose the head-tail, since we know this excess comes from the AmBe source.
- Do the same on the Background dataset and compare to see if there are differences.

Directionality evaluation - Examples

L. Zappaterra, 28th October 2024

8

Directionality evaluation - Examples

L. Zappaterra, 28th October 2024

Map of AmBe Nuclear Recoils

L. Zappaterra, 28th October 2024

Angle (degrees)

 Ω

Flat Distribution Uncertainty

 $\frac{1}{1}$

50

100

150

AmBe

 -50

- Flat Distribution

AmBe Uncertainty

Directionality evaluation - AmBe vs. Bkg

• Observations:

- Excess of vertical clusters in Bkg sample. Compatible with flat distribution.
- Excess of horizontal clusters in AmBe sample. Not compatible with flat distribution.
- Is this expected?

20

 -150

 -100

30

25

20

 $rac{15}{2}$ 15

Monte Carlo validation

Strategy:

- · Simulate a fake nuclear recoil inside the detector frame.
- Model the interaction as a simple elastic scattering.
- Project the angle on the GEM plane and compare with the observed distribution.

LAB frame $\mathbf U$ θ_{U} $\mathbf v$ m $\mathbf b$ M θ_{W} $\mathbf R$ W $S1n \gamma$ θ_W $=$ arctan $\cos \nu$

• Vertical region is not perfectly matched by the AmBe sample, but **Bkg is for sure flatter.**

MC validation - Simulated angle

$E_i(\sigma) = E_i + error$

where $error \in Gauss(0, \sigma)$

- The differences in the distributions could be due to our angular resolution, which is absent in the simulation.
- We can simulate it by means of a gaussian smearing.
- In order to statistically compare the distributions, we can use the reduced χ^2 , indicating the measurements with O_i and the simulation with $E_i(\sigma)$.

MC validation - Gaussian Smearing

$$
\chi^2 = \sum_{i} \frac{\left[O_i - E_i(\sigma)\right]^2}{E_i(\sigma) \times \nu} \qquad \nu = \text{\# of bins}
$$

Angular resolution = 5°:

L. Zappaterra, 28th October 2024

Angular resolution = 25°:

L. Zappaterra, 28th October 2024

num_events=384

17

Angular resolution = 40°:

L. Zappaterra, 28th October 2024

num_events=384

Angular resolution = 55°:

L. Zappaterra, 28th October 2024

num_events=384

Angular resolution = 85°:

L. Zappaterra, 28th October 2024

MC validation - χ^2 vs. Resolution

- Two claims can be extracted from $10²$ these tests:
	- Our measurement resolution with this method is ground 40-45°.
	- There is a preferential direction in the AmBe dataset.

 10^0

 χ^2

We can reconstruct the source position

• The AmBe source was placed at half height (Y ~ 1150pixels)

First evidence of the directionality of LIME for Nuclear Recoils

MC validation - χ^2 vs. Resolution

- Two claims can be extracted from $10²$ these tests:
	- Our measurement resolution with this method is ground 40-45°.
	- There is a preferential direction in the AmBe dataset.

 10^0

 χ^2

Clusters 3D range reconstruction

- . 3D range $= \sqrt{\text{sc_length}^2 + L_z^2}$, with $L_z = v_{\text{drift}} \times \text{Tor}^{\text{max}}$
- 55Fe source half-way in the drift direction.

• Both lengths should be preprocessed removing the diffusion, evaluated from data taken with

Clusters 3D range reconstruction

- A 5.9 keV e^- travel ~0.5 mm in He:CF₄.
- From the previous slide we obtain:

8.63 ± 0.9 mm

- spot size mainly due to diffusion only.
- This measurements can be interpreted as offsets to be subtracted to their relative physical quantities.

- Since the effect of the diffusion increases with the distance, the length offset does it too;
- Diffusion of ionisation electrons scales with the square root of the distance in drift chambers.
- Transverse profile *σ* gives α measure of the position of small clusters in the drift direction.

- Fit Energy vs Range simulation with a 2nd order polynomial function.
- With this we can extrapolate energies outside the simulated range domain and compute the "expected energy".

3D range distribution for AmBe NRs sample

- Combining camera and PMTs we can obtain 3D range for each cluster.
- Most of the clusters are shorter than 10 mm.

Expected energy spectrum for AmBe NRs sample

True energy spectrum from 3D range

- Known non-linearity response for very dense tracks.
- Using previous range vs energy simulations, the true energy spectrum is extracted.
- Maximum bin for NR with reconstructed energies between 200 and 300 keV

Energy saturation factor distribution

Conclusions

First RUN with AmBe lasted unfortunately less than 48 hours;

With a very simple selection, 1461 NR were identified, to be compared with 71 in a same data-taking without source;

From an evaluation based on their length, their energy was reconstructed to be mainly below 1 MeV;

The distribution of their angles reconstructed with a PCA performed on the saved clusters is:

- different for the AmBe and bkg neutron, indicating a clear sensitivity to the NR preferred direction

- compatible with a direction resolution of about 40-45O