
EOSC-hub receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 777536.

eosc-hub.eu

@EOSC_eu

Tech-Talk
Marica Antonacci - INFN

PaaS Orchestrator

Dissemination level: Public/Confidential If confidential, please define:

Disclosing Party: (those disclosing confidential information)

Recipient Party: (to whom this information is disclosed, default: project consortium)

❏ PaaS layer
❏ Deployment workflow
❏ Orchestrator architecture
❏ Usage scenarios
❏ APIs and tools

06/21/2018 2

Outline

❏ The PaaS Orchestrator is based on the developments carried out during the
INDIGO-DataCloud project.

❏ It allows to coordinate the provisioning of virtualized compute and storage
resources on different Cloud Management Frameworks (like OpenStack,
OpenNebula, AWS, etc.) and the deployment of dockerized services and
jobs on Mesos clusters.

❏ The PaaS orchestrator features advanced federation and scheduling
capabilities ensuring the transparent access to heterogeneous cloud
environments and the selection of the best resource providers based on
criteria like user’s SLAs, services availability and data location

06/21/2018 3

PaaS Orchestrator Overview

06/21/2018 4

INDIGO Platform as a Service Layer

❏ The Orchestrator receives the deployment request (TOSCA template)
❏ The Orchestrator collects all the information needed to deploy the virtual

infra/service/job consuming others PaaS μServices APIs:
● SLAM Service: get the prioritized list of SLAs per user/group;
● Configuration Management DB: get the the capabilities of the underlying IaaS

platforms;
● Data Management Service: get the status of the data files and storage resources

needed by the service/application
● Monitoring Service: get the IaaS services availability and their metrics;
● CloudProviderRanker Service (Rule Engine): sort the list of sites on the basis of rules

defined per user/group/use-case;
❏ The orchestrator delegates the deployment to IM, HEAT or Mesos based on the TOSCA

template and the list of sites.
❏ Cross-site deployments are also possible.

06/21/2018 5

The Deployment Workflow

06/21/2018 6

PaaS Orchestrator Architecture

06/21/2018 7

Scenario I: Deployment of Virtual Infrastructures

06/21/2018 8

Use case: frontend + elastic batch system

❏ Elastic Galaxy Cluster
❍ a Galaxy portal is automatically deployed from TOSCA and configured to use a

SLURM elastic cluster

❏ Elastic Mesos Cluster
❍ a complete HA Mesos cluster with Chronos/Marathon framework is automatically

deployed from a TOSCA template

❏ Jupyter with K8s Cluster

❏ HTCondor cluster on Mesos (DODAS)

❏ Big-data Analysis Cluster (Spark on Mesos)

❏ ...

06/21/2018 9

Ready-to-use Templates

06/21/2018 10

Scenario II: Deployment of managed services/jobs

● PaaS orchestrator interacts with:
○ Marathon to deploy, monitor and scale

Long-Running services, ensuring that
they are always up and running.

○ Chronos to run user applications
(jobs), taking care of fetching input
data, handling dependencies among
jobs, rescheduling failed jobs.

● Marathon and Chronos are two powerful
frameworks that can be deployed on top of
a Mesos Cluster.

● Mesos is able to manage cluster resources
(cpu, mem) providing isolation and sharing
across distributed applications (frameworks)

06/21/2018 11

Use-case: execution of batch-like jobs

❐ Parameter sweep
❍ the TOSCA template can describe multiple jobs

➣ Each job is run with a specific set of input parameters
➣ The jobs are run in parallel on the Mesos cluster

● the scaling service ensures that new slave nodes are added to the cluster, if needed

❐ Retries

❍ each job is automatically re-submitted with a configurable number of retries before being

marked as failed

❐ Job dependencies

❍ dependency among jobs can be defined in the TOSCA template and managed automatically

❐ Data-aware Scheduling

❍ The Orchestrator is able to select automatically the best compute cluster based on the data

location

06/21/2018 12

Features

● Scenario I: the job data are staged in/out using the user’s onedata spaces (providing
proper access token(s))
○ example template:

https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_oned
ata.yaml

● Scenario II: the job data are fetched from public URLs and uploaded to a repository
(web, swift/S3, etc.) using the credentials specified by the user
○ example template:

https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_outp
ut_upload_swift.yaml

06/21/2018 13

Example TOSCA Templates

https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_onedata.yaml
https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_onedata.yaml
https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_output_upload_swift.yaml
https://github.com/indigo-dc/tosca-types/blob/master/examples/indigo_job_output_upload_swift.yaml

06/21/2018 14

Use-case: deployment of a long-running service

06/21/2018 15

Long-running service: generic template

❏ The PaaS Orchestrator is being extended in order to:

-Support the transparent access to specialised computing hardware (GPUs,

Infiniband, etc.) and HPC resources

-Improve the workflow for hybrid deployments

-Integrate a data management policy engine (QoS and Data Life Cycle)

-Support workflows for data pre-processing at ingestion

06/21/2018 16

New Features and enhancements

• Create a deployment:

- POST request to /deployments - parameters:

▪ template: string containing a TOSCA YAML-formatted template

▪ parameters: the input parameters of the deployment (map of strings)

• Get deployment details:

- GET request to /deployments:

▪ curl 'http://localhost:8080/deployments/<uuid>'

• Delete deployment:

- DELETE request

▪ curl 'http://localhost:8080/deployments/<uuid>'

• Documentation: http://indigo-dc.github.io/orchestrator/restdocs/#overview

06/21/2018 17

Orchestrator APIs

export ORCHENT_TOKEN=<your access token>
export ORCHENT_URL=<orchestrator_url>

usage: orchent <command> [<args> ...]

Commands:
 help [<command>...]
 Show help.

 depls
 list all deployments

 depshow <uuid>
 show a specific deployment

 depcreate [<flags>] <template> <parameter>
 create a new deployment

 depupdate [<flags>] <uuid> <template> <parameter>
 update the given deployment

 deptemplate <uuid>
 show the template of the given deployment

 depdel <uuid>
 delete a given deployment

 resls <depployment uuid>
 list the resources of a given deployment

06/21/2018 18

Orchent: The Orchestrator CLI

Installation guide:
https://indigo-dc.gitbooks.io/orchent/content/admin.html
User guide:
https://indigo-dc.gitbooks.io/orchent/content/user.html

06/21/2018 19

Resources

❐ TOSCA Templates
❍ Use-cases templates: https://github.com/indigo-dc/tosca-templates
❍ Example templates: https://github.com/indigo-dc/tosca-types/tree/master/examples

❐ Ansible Roles

❍ Ansible Galaxy: https://galaxy.ansible.com/indigo-dc/

❐ Docker images

❍ Docker hub: https://hub.docker.com/u/indigodatacloudapps/dashboard/

https://github.com/indigo-dc/tosca-templates
https://github.com/indigo-dc/tosca-types/tree/master/examples
https://galaxy.ansible.com/indigo-dc/

06/21/2018 20

DEMO

https://www.youtube.com/watch?v=rVFpsRaxbaU

https://www.youtube.com/watch?v=rVFpsRaxbaU

eosc-hub.eu @EOSC_eu

 Thank you for your
attention!

 Questions?

 Contact

Marica Antonacci: marica.antonacci@ba.infn.it

