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Introduction

▷ Motivation: reduce data to manageable levels by selecting only events 
of interest, saving storage and processing resources.

○ Each run containing 400 images need ~1.36 Gb to be stored.

○ ~266 Gb of data was produced on September 26th.
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Proposal

▷ Develop algorithms to be tested as online trigger to decide 
whether to save or not images taken by the detector.

○ Convolution of the image with several kernels: look for high correlation  
points. presentation

○ Explore Machine Learning methods (CNN).  presentation
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https://agenda.infn.it/event/41735/contributions/233423/attachments/119575/173355/Trigger%20Proposal%20Status.pdf
https://agenda.infn.it/event/42653/contributions/239874/attachments/123871/181849/Trigger%20Proposal%20Status%20-%20CNN.pdf


Improvements

▷ The CNN was improved by using bayesian optimization during the 
training.

○ Four different CNNs (with 6, 7, 8 or 9 convolutional layers) were achieved.

▷ CPU (cloud) and GPU (google colab) time analysis was performed.
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Simulation
▷ We started using Pietro’s simulation, which contains:

○ ER events with 1, 3, 6, 10, 30 and 60 keV (1k each)
○ NR events with 1, 3, 6, 10, 30 and 60 keV (1k each)

▷ The 1 keV simulation was used to create smaller energies simulations 
(0.25 and 0.5 keV).
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Datasets
▷ Datasets

○ Training:
■ Noise dataset: 600 images from pedestal runs (Run 4 underground).
■ ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to 

pedestal runs (different from noise dataset).

○ Validation:
■ Noise dataset: 200 images from pedestal runs.
■ ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.

○ Test:
■ Same configuration as validation.
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Signal split

▷ The signal split was done in a way to maintain the three distributions as similar 
as possible.
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Noise
▷ A 2304x2304 image is too big for a CNN to 

handle, meaning that a size reduction is needed.

▷ A possible approach is to send fractionated 
patches from the original image to the CNN.
○ Tensorflow extract patches function was used.

▷ The right images were divided into 63 patches 
with 288x288 pixels each with an overlap region 
between them.

Reco bottom cut

Reco uppercut
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CNN

● Feature extraction: Looking for features while reducing the size of the 
image.

● Binary classification: Combine all the features with neurons in the FCL and 
classify the input image.
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CNN architecture

▷ The input shape of the CNN limits the number of convolutional and 
max-pooling layers that can be used.

○ An image with 288 (25.32) pixels may use up to 7 (5+2) layers with regular 
max-pooling.

○ Custom max-pooling layers may be used to increase the number of layers up to 9.

▷ Four CNN architectures were selected (number of layers from 6 to 9).

○ The bayesian optimization was used during training.

○ The approach is to select a range of possible hyperparameters (number of filters in 
each conv layer, neurons on dense layer, etc) and the method will find the optimal 
values.
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CNN training
Signal image

Noise image

▷ Both ER and NR were used together during the CNN training.
○ The signal was randomly rotated and placed in a position among the 

noise.

▷ 4800 images with 288x288 pixels were used on CNN training and 
1600 on validation.
○ Every signal from the split was used twice.
○ The noise patch used was always different.

▷ The best result was achieved by using 0.5 keV signals on training.
○ 0.25 keVs signals generally led to overfitting.
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CNN test
▷ Since the actual image has 2304x2304 pixels, the 

test should be performed in way to use all that 
information.
○ The highest prediction of the CNN on each one of the 

63 patches from noise images is stored.
○ The highest prediction on the CNN on each one of the 

patches that contain an information of the signal is 
stored.

▷ This procedure was used on the 400 images 
separated for test.
○ ER and NR were tested separately to see the CNN 

performance.
○ 0.25 and 0.5 keV signals were used for test.



4.
Results

16



17

CNN ROC 0.25 keV
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CNN ROC 0.25 keV
▷ All four architectures show close results 

based on ROC curves.
○ The CNN of last presentation had AUC of 

0.866 and 0.912 for NR and ER respectively.

▷ ER test dataset was slightly easier for all 
filters and CNNs used (probably due to 
dataset split).

Area Under Curve for 0.25 keV ROCs
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CNN ROC 0.5 keV

Almost perfect ROC curves for 0.5 keV
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Time analysis CPU

▷ Gaussian filter is by far the fastest using 
cloud CPU (0.2 seconds per image).

▷ The fastest CNN on CPU is the one with 9 
convolutional layers (0.55 seconds per 
image).
○ Overall number of operations is smaller than others.
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Time analysis GPU

▷ Gaussian filter needs 0.02 seconds per image 
with Tesla T4 GPU from google colab.

▷ All CNNs have similar performance with 
GPU (0.2 seconds per image).
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Reconstruction 0.25 keV

The reconstruction found noise clusters on 55 events (27.5% false alarm) and detected ~135 signals 
(67.5% signal detection).
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CNN ROC 0.25 keV vs Reco

● Both methods (best filter and best CNN) detect all events clustered by the reconstruction.
● A signal detection performance of 80% would represent a false alarm close to 0% for the CNN.



4.
Conclusion
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Conclusion 
▷ It was possible to improve even more the CNN performance (~0.03 

AUC increase) compared to the last one.

▷ It was clear that an improvement in signal detection has to be 
compensated with processing time (CNN vs filtering comparison).

▷ The GPU was able to speed up the CNNs and gaussian filter to 0.2 and 
0.02 s per image respectively.
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Next steps
▷ Study methods to simplify a trained CNN model: Bit reduction, weight 

combination, pruning and vectorization.
○ Reduce processing time without harming performance.

▷ Write a paper about these results.
○ Trigger proposal based on filters and CNN.



Thanks!
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Trigger on real data NRAD (extra)
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As regiões onde há alguma informação de sinal foram corretamente identificadas pelos algoritmos de 
trigger.


