

Trigger proposal

Igor Pains with Rafael Nóbrega

03/10/2024 Analysis & reconstruction meeting

1. Introduction

Introduction

- Motivation: reduce data to manageable levels by selecting only events of interest, saving storage and processing resources.
 - Each run containing 400 images need ~1.36 Gb to be stored.
 - ~266 Gb of data was produced on September 26th.

Proposal

- Develop algorithms to be tested as online trigger to decide whether to save or not images taken by the detector.
 - Convolution of the image with several kernels: look for high correlation points. <u>presentation</u>
 - Explore Machine Learning methods (CNN). presentation

Improvements

- The CNN was improved by using bayesian optimization during the training.
 - Four different CNNs (with 6, 7, 8 or 9 convolutional layers) were achieved.

CPU (cloud) and GPU (google colab) time analysis was performed.

Simulation

▷ We started using Pietro's simulation, which contains:

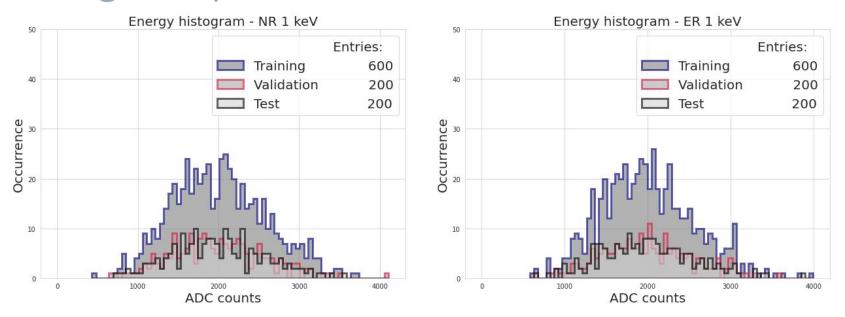
- ER events with 1, 3, 6, 10, 30 and 60 keV (1k each)
- NR events with 1, 3, 6, 10, 30 and 60 keV (1k each)
- The 1 keV simulation was used to create smaller energies simulations (0.25 and 0.5 keV).

Datasets

Datasets

- Training:
 - Noise dataset: 600 images from pedestal runs (Run 4 underground).
 - ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to pedestal runs (different from noise dataset).
- Validation:
 - Noise dataset: 200 images from pedestal runs.
 - ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.
- Test:
 - Same configuration as validation.

Signal split

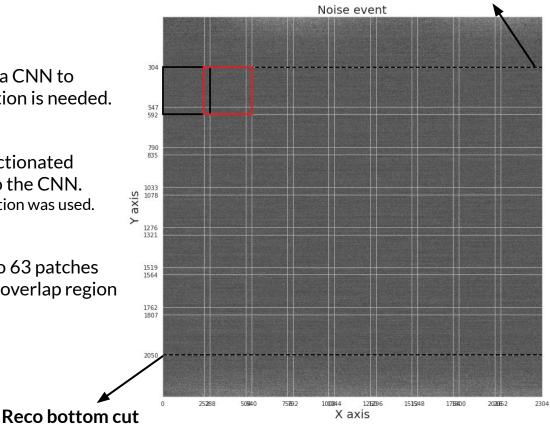


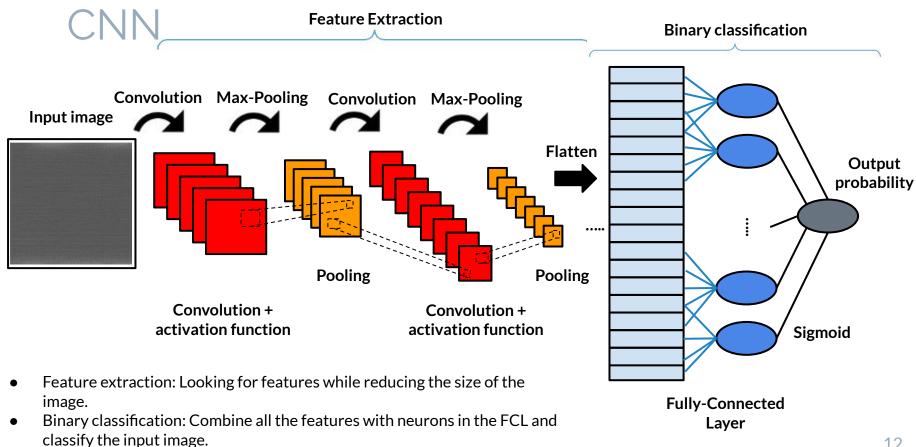
The signal split was done in a way to maintain the three distributions as similar as possible.

Reco uppercut

Noise

- A 2304x2304 image is too big for a CNN to handle, meaning that a size reduction is needed.
- A possible approach is to send fractionated patches from the original image to the CNN.
 - Tensorflow extract patches function was used.
- The right images were divided into 63 patches with 288x288 pixels each with an overlap region between them.





CNN architecture

- The input shape of the CNN limits the number of convolutional and max-pooling layers that can be used.
 - An image with 288 (2⁵.3²) pixels may use up to 7 (5+2) layers with regular max-pooling.
 - Custom max-pooling layers may be used to increase the number of layers up to 9.
- ▶ Four CNN architectures were selected (number of layers from 6 to 9).
 - The bayesian optimization was used during training.
 - The approach is to select a range of possible hyperparameters (number of filters in each conv layer, neurons on dense layer, etc) and the method will find the optimal values.

CNN training

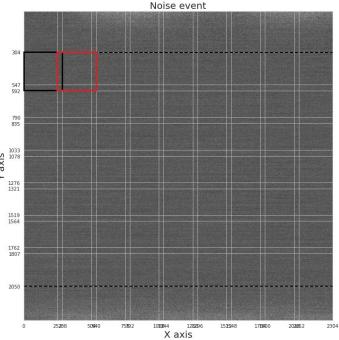
- Both ER and NR were used together during the CNN training.
 - The signal was randomly rotated and placed in a position among the noise.
- 4800 images with 288x288 pixels were used on CNN training and 1600 on validation.
 - Every signal from the split was used twice.
 - The noise patch used was always different.
- ▷ The best result was achieved by using 0.5 keV signals on training.
 - 0.25 keVs signals generally led to overfitting.

Signal image

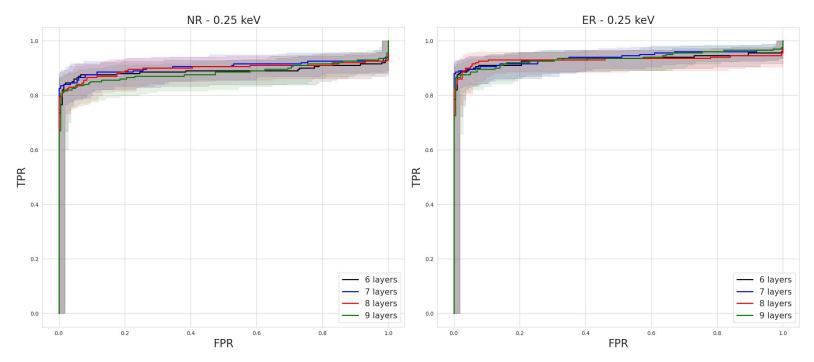


CNN test

- Since the actual image has 2304x2304 pixels, the \triangleright test should be performed in way to use all that information.
 - The highest prediction of the CNN on each one of the 0
 - 63 patches from noise images is stored. The highest prediction on the CNN on each one of the signal is Ο stored.
- This procedure was used on the 400 images \triangleright separated for test.
 - ER and NR were tested separately to see the CNN Ο performance.
 - 0.25 and 0.5 keV signals were used for test. 0



CNN ROC 0.25 keV



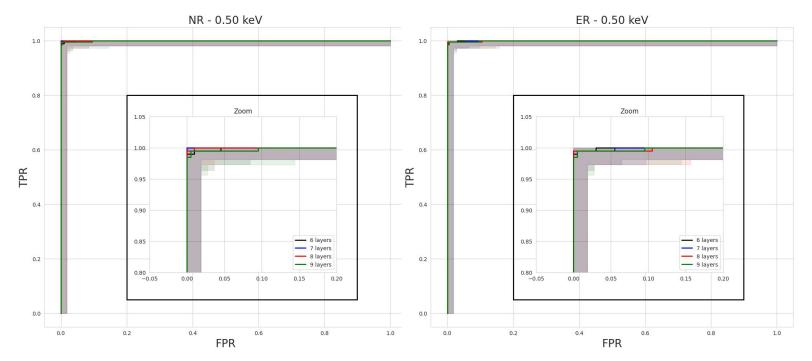
CNN ROC 0.25 keV

- All four architectures show close results based on ROC curves.
 - The CNN of last presentation had AUC of 0.866 and 0.912 for NR and ER respectively.
- ER test dataset was slightly easier for all filters and CNNs used (probably due to dataset split).

Area Under Curve for 0.25 keV ROCs

Architecture	NR	ER
6 layers	$0.8888 \pm ^{0.0423}_{0.0714}$	$0.9308 \pm ^{0.0322}_{0.0650}$
7 layers	$0.9036\pm^{0.0393}_{0.0691}$	$0.9389\pm^{0.0298}_{0.0631}$
8 layers	$0.8974 \pm \substack{0.0405 \\ 0.0708}$	$0.9312 \pm \substack{0.0315\\0.0637}$
9 layers	$0.8836\pm_{0.0742}^{0.0444}$	$0.9348 \pm \substack{0.0317\\0.0654}$

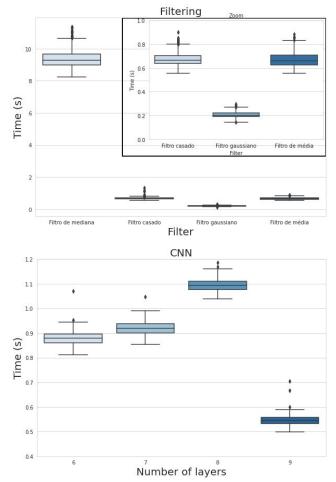
CNN ROC 0.5 keV



Almost perfect ROC curves for 0.5 keV

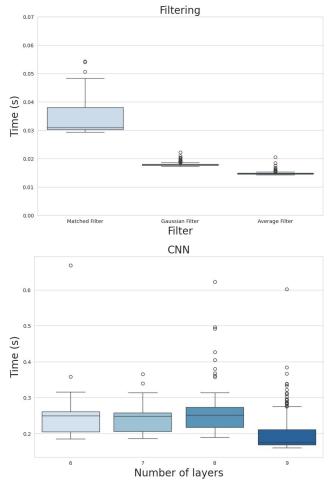
Time analysis CPU

- Gaussian filter is by far the fastest using cloud CPU (0.2 seconds per image).
- The fastest CNN on CPU is the one with 9 convolutional layers (0.55 seconds per image).
 - Overall number of operations is smaller than others.



Time analysis GPU

- Gaussian filter needs 0.02 seconds per image with Tesla T4 GPU from google colab.
- All CNNs have similar performance with GPU (0.2 seconds per image).

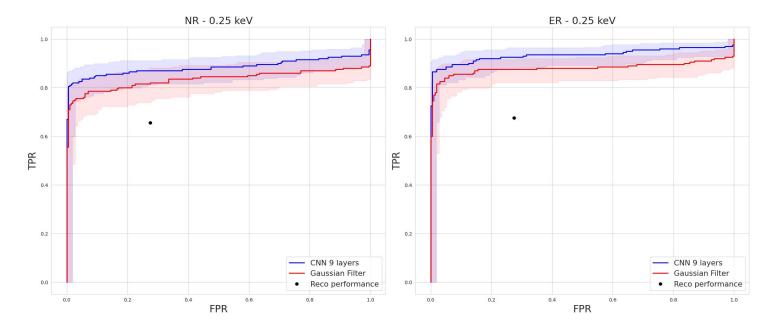


Reconstruction 0.25 keV



The reconstruction found noise clusters on 55 events (27.5% false alarm) and detected ~135 signals (67.5% signal detection).

CNN ROC 0.25 keV vs Reco



- Both methods (best filter and best CNN) detect all events clustered by the reconstruction.
- A signal detection performance of 80% would represent a false alarm close to 0% for the CNN.



Conclusion

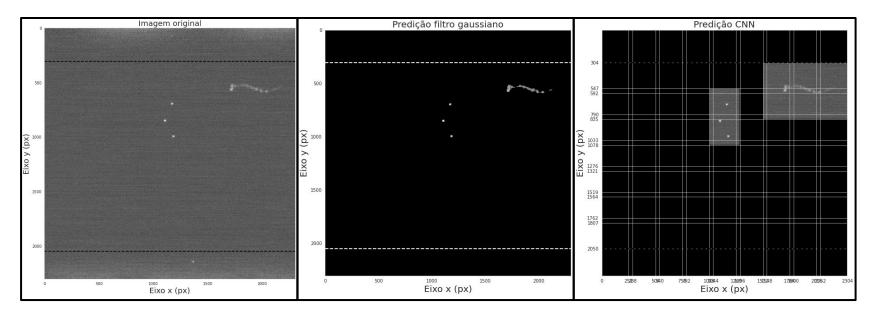
- It was possible to improve even more the CNN performance (~0.03 AUC increase) compared to the last one.
- It was clear that an improvement in signal detection has to be compensated with processing time (CNN vs filtering comparison).
- The GPU was able to speed up the CNNs and gaussian filter to 0.2 and 0.02 s per image respectively.

Next steps

- Study methods to simplify a trained CNN model: Bit reduction, weight combination, pruning and vectorization.
 - Reduce processing time without harming performance.
- ▷ Write a paper about these results.
 - Trigger proposal based on filters and CNN.

Thanks!

Trigger on real data NRAD (extra)



As regiões onde há alguma informação de sinal foram corretamente identificadas pelos algoritmos de trigger.