
Trigger proposal

Igor Pains
with Rafael Nóbrega

03/10/2024
Analysis & reconstruction meeting

1.
Introduction

2

Introduction

▷ Motivation: reduce data to manageable levels by selecting only events
of interest, saving storage and processing resources.

○ Each run containing 400 images need ~1.36 Gb to be stored.

○ ~266 Gb of data was produced on September 26th.

3

Proposal

▷ Develop algorithms to be tested as online trigger to decide
whether to save or not images taken by the detector.

○ Convolution of the image with several kernels: look for high correlation
points. presentation

○ Explore Machine Learning methods (CNN). presentation

4

https://agenda.infn.it/event/41735/contributions/233423/attachments/119575/173355/Trigger%20Proposal%20Status.pdf
https://agenda.infn.it/event/42653/contributions/239874/attachments/123871/181849/Trigger%20Proposal%20Status%20-%20CNN.pdf

Improvements

▷ The CNN was improved by using bayesian optimization during the
training.

○ Four different CNNs (with 6, 7, 8 or 9 convolutional layers) were achieved.

▷ CPU (cloud) and GPU (google colab) time analysis was performed.

5

2.
Dataset

6

7

Simulation
▷ We started using Pietro’s simulation, which contains:

○ ER events with 1, 3, 6, 10, 30 and 60 keV (1k each)
○ NR events with 1, 3, 6, 10, 30 and 60 keV (1k each)

▷ The 1 keV simulation was used to create smaller energies simulations
(0.25 and 0.5 keV).

8

Datasets
▷ Datasets

○ Training:
■ Noise dataset: 600 images from pedestal runs (Run 4 underground).
■ ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to

pedestal runs (different from noise dataset).

○ Validation:
■ Noise dataset: 200 images from pedestal runs.
■ ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.

○ Test:
■ Same configuration as validation.

9

Signal split

▷ The signal split was done in a way to maintain the three distributions as similar
as possible.

10

Noise
▷ A 2304x2304 image is too big for a CNN to

handle, meaning that a size reduction is needed.

▷ A possible approach is to send fractionated
patches from the original image to the CNN.
○ Tensorflow extract patches function was used.

▷ The right images were divided into 63 patches
with 288x288 pixels each with an overlap region
between them.

Reco bottom cut

Reco uppercut

3.
CNN

11

12

Input image

Convolution +
activation function

Pooling

Convolution +
activation function

Pooling

…
..…..

Feature Extraction

Convolution Max-Pooling Convolution Max-Pooling

Flatten

Binary classification

Fully-Connected
Layer

Sigmoid

Output
probability

CNN

● Feature extraction: Looking for features while reducing the size of the
image.

● Binary classification: Combine all the features with neurons in the FCL and
classify the input image.

13

CNN architecture

▷ The input shape of the CNN limits the number of convolutional and
max-pooling layers that can be used.

○ An image with 288 (25.32) pixels may use up to 7 (5+2) layers with regular
max-pooling.

○ Custom max-pooling layers may be used to increase the number of layers up to 9.

▷ Four CNN architectures were selected (number of layers from 6 to 9).

○ The bayesian optimization was used during training.

○ The approach is to select a range of possible hyperparameters (number of filters in
each conv layer, neurons on dense layer, etc) and the method will find the optimal
values.

14

CNN training
Signal image

Noise image

▷ Both ER and NR were used together during the CNN training.
○ The signal was randomly rotated and placed in a position among the

noise.

▷ 4800 images with 288x288 pixels were used on CNN training and
1600 on validation.
○ Every signal from the split was used twice.
○ The noise patch used was always different.

▷ The best result was achieved by using 0.5 keV signals on training.
○ 0.25 keVs signals generally led to overfitting.

15

CNN test
▷ Since the actual image has 2304x2304 pixels, the

test should be performed in way to use all that
information.
○ The highest prediction of the CNN on each one of the

63 patches from noise images is stored.
○ The highest prediction on the CNN on each one of the

patches that contain an information of the signal is
stored.

▷ This procedure was used on the 400 images
separated for test.
○ ER and NR were tested separately to see the CNN

performance.
○ 0.25 and 0.5 keV signals were used for test.

4.
Results

16

17

CNN ROC 0.25 keV

18

CNN ROC 0.25 keV
▷ All four architectures show close results

based on ROC curves.
○ The CNN of last presentation had AUC of

0.866 and 0.912 for NR and ER respectively.

▷ ER test dataset was slightly easier for all
filters and CNNs used (probably due to
dataset split).

Area Under Curve for 0.25 keV ROCs

19

CNN ROC 0.5 keV

Almost perfect ROC curves for 0.5 keV

20

Time analysis CPU

▷ Gaussian filter is by far the fastest using
cloud CPU (0.2 seconds per image).

▷ The fastest CNN on CPU is the one with 9
convolutional layers (0.55 seconds per
image).
○ Overall number of operations is smaller than others.

21

Time analysis GPU

▷ Gaussian filter needs 0.02 seconds per image
with Tesla T4 GPU from google colab.

▷ All CNNs have similar performance with
GPU (0.2 seconds per image).

22

Reconstruction 0.25 keV

The reconstruction found noise clusters on 55 events (27.5% false alarm) and detected ~135 signals
(67.5% signal detection).

23

CNN ROC 0.25 keV vs Reco

● Both methods (best filter and best CNN) detect all events clustered by the reconstruction.
● A signal detection performance of 80% would represent a false alarm close to 0% for the CNN.

4.
Conclusion

24

25

Conclusion
▷ It was possible to improve even more the CNN performance (~0.03

AUC increase) compared to the last one.

▷ It was clear that an improvement in signal detection has to be
compensated with processing time (CNN vs filtering comparison).

▷ The GPU was able to speed up the CNNs and gaussian filter to 0.2 and
0.02 s per image respectively.

26

Next steps
▷ Study methods to simplify a trained CNN model: Bit reduction, weight

combination, pruning and vectorization.
○ Reduce processing time without harming performance.

▷ Write a paper about these results.
○ Trigger proposal based on filters and CNN.

Thanks!

27

Trigger on real data NRAD (extra)

28

As regiões onde há alguma informação de sinal foram corretamente identificadas pelos algoritmos de
trigger.

