Hyperkamiokande

Eugenio Berti *30 September 2024*

1

Introduction

Far detector Geometry

Inner Detector (ID)

- 64.8m diameter, 65.8m height
- 40k PMTs, 50 cm, will be installed
- 800 Multi-PMT modules will be integrated as hybrid configuration

Outer Detector (OD)

- 1m (barrel) or 2m (top/bottom) thick
- 3-inch PMT + WLS plate
- Walls are covered with high reflectivity Tyvek sheets

Energy Threshold ~ 5 MeV Energy Resolution ~3% Time resolution ~ 1 ns Vertex Resolution ~10 cm

Far detector Sensors

mPMT for increased granularity to improve vertex and angular resolution (especially for *multi-ring* events and at edges of fiducial volume)

PMT with doubled single photoelectron detection efficiency with respect to SK

Tokai to Kamioka

Beam line

Near detectors at 280 m from target

ND280 (off axis – E_v~0.6 GeV)
constraint v flux
constraint v cross section
→ Uncertainty on the this part of models reduced to 3% in SK

INGRID (on axis - $E_v \sim 2.2 \text{ GeV}$) • constraint v beam direction • monitor v beam profile Near detectors are mandatory to study $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ and corresponding $\overline{\nu}$ processes!

ND280 Upgrade

Intermediate detector at ~1 km from target

About *the total systematic error in* v_e *appearance channel*: Near detectors in T2K allows for error reduction from 13 to 5%, HK aims to decrease them to **2%** thanks for ND280 and IWCD.

Detector calibration

INFN Contribution

Multi-PMT not mPMT for IWCD

300 mPMTs by INFN (project leader), 808 mPMTs total. Derived from KM3NeT DOMs.

Electronics

20' PMTs Front-end digitizer, **project leader**, INFN design chosen vs Japan and France.

Timing distribution

Computing

~25% computing power of Hyper-K 2022-26 at CNAF, collaborative tools, analysis tools

High Angle TPCs

Just installed: two new TPCs for the near detector upgrade of T2K (will be part of the near detector of Hyper-K)

Lowering bottom HATPC 2023.9.8

Interaction processes High energy

Interaction processes Low energy

Interaction processes Medium comparison

Gadolinium loading

0.1% loading increases neutron capture cross section by 10⁵ strongly improving sensitivity at low energy and source pointing resolution

	H ₂ O	H ₂ O +
		0.1% Gd
Thermal capture cross section (s)	~ 0.3 barns	~49,000 barns
Capture time (t)	~220 µsec	~30 µsec
Energy released	2.2 MeV (single γ)	~8 MeV (γ cascade)

Event categories

Event identification

Multi-Ring events covers different processes like v_{τ} interaction, π^0 production via Δ resonance, proton decay $p \rightarrow e^+ + \pi^0,...$

Possible developments

HyperKamiokande vs DUNE

Multi-purpose experiments, similar goals, a different, complementary approach:

- Baselines and energy ranges: narrow band beam vs wide band beam
- Detector masses: fiducial 190 kton vs 20 (40) kton
- Detection process: at 10 MeV mainly IBD (antinue) vs CC (nue)
- Detector technology: water Cherenkov vs liquid Argon TPC

Physics motivation

Short Reference

In case of just two neutrino families

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \ \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

Sensitivity is maximum if baseline is

$$L_{\rm osc} \ (\rm km) = 2\pi \frac{E_{\nu}(\rm GeV)}{1.27\Delta m^2(\rm eV^2)}$$

Solar ~ 1MeV/100km Atmospheric ~ 1GeV/100km (10MeV/1km)

Experimental parameters:

- 2 mass² differences
- 3 mixing angle terms
- 1 CP violation phase

Standard model

Goals

Beam neutrinos

 v_e and v_e appearance $\rightarrow \delta_{CP}$ and θ_{13} v_{μ} disappearance $\rightarrow \theta_{23}$ and $|\Delta m^2_{23}|$

Atmospheric neutrinos

 v_e and $\overline{v_e}$ as a function of E and θ_{zenith} \rightarrow sign of Δm^2_{23} , octant of θ_{23} , δ_{CP} T2K

"Argomenti di tesi sono lo studio del readout della TPC (Time Projection Chamber) del rivelatore vicino, lo studio della separazione di interazioni di neutrino muonico ed elettronico, lo studio della produzione di pioni neutri in interazioni di corrente neutra di neutrino."

T2K: 2010-2021

T2K-II (with improved beam power and near detector): 2023...2027?

Beam neutrinos

Appearance

Main backgrounds:

- "wrong flavor" ν_e instead of ν_μ
- "wrong sign" $\overline{\nu}_{\mu}$ instead of ν_{μ}
- muon (and 5% kaon) decays

		signal		BG						Tradi
_		$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \text{ CC}$	$\overline{\nu}_{\mu} ~ \mathrm{CC}$	$\nu_e CC$	$\overline{\nu}_e CC$	NC	BG Total	Total
ν mode	Events	1643	15	7	0	248	11	134	400	2058
	Eff.(%)	63.6	47.3	0.1	0.0	24.5	12.6	1.4	1.6	
$\bar{\nu}$ mode	Events	206	1183	2	2	101	216	196	517	1906
	Eff. (%)	45.0	70.8	0.03	0.02	13.5	30.8	1.6	1.6	

Dominant background from intrinsic $v_e(\overline{v}_e)$ in beam

Important wrong sign background in $\bar{\nu}_{\mu}$ beam due to larger ν_e flux (proton beam is positive) and ν_e cross-section

Beam neutrinos

Disappearance

Main backgrounds:

- "wrong flavor" ν_e instead of ν_μ
- "wrong sign" $\overline{\nu}_{\mu}$ instead of ν_{μ}
- muon (and 5% kaon) decays

		$\nu_{\mu} \text{CCQE}$	$\nu_{\mu} {\rm CC}$ non-QE	$\overline{\nu}_{\mu} \mathrm{CCQE}$	$\overline{\nu}_{\mu} \mathrm{CC}$ non-QE	$\nu_e + \overline{\nu}_e~{\rm CC}$	NC	$\nu_{\mu} \rightarrow \nu_{e}$	total
ν mode	Events	6043	2981	348	194	6	480	29	10080
	Eff. (%)	91.0	20.7	95.6	53.5	0.5	8.8	1.1	
$\bar{\nu}$ mode	Events	2699	2354	6099	1961	7	603	4	13726
	Eff. (%)	88.0	20.1	95.4	54.8	0.4	8.8	0.7	

Important wrong sign background in $\overline{\nu_{\mu}}$ beam due to larger ν_{e} flux (proton beam is positive) and ν_{e} cross-section

Beam neutrinos Expectations

Assuming 1 tank for 10 years

Atmospheric neutrinos What to look where

Atmospheric neutrinos v_e / \bar{v}_e separation – 1 Ring

For CC ν_e :

 $\nu_e + n \rightarrow e^- + N' + \text{pions}$ (Total charge for the N' and pion system is +1) $\nu_e + p \rightarrow e^- + N' + \text{pions}$ (Total charge for the N' and pion system is +2) where the pion further decays into

2

$$\begin{aligned} \pi^+ \to & \mu^+ & +\nu + \mu \\ & & & \downarrow \bullet & e^+ + \nu_e + \overline{\nu}_\mu \end{aligned}$$

producing decay electrons.

For $CC\overline{\nu}_e$:

 $\bar{\nu}_e + p \rightarrow e^+ + N' + \text{pions}$ (Total charge for the N' and pion system is 0) $\bar{\nu}_e + n \rightarrow e^+ + N' + \text{pions}$ (Total charge for the N' and pion system is -1) where π^- is more likely to be absorbed by water nuclei and hence no decay electrons are emitted. Therefore, by considering the number of decay electrons, multi-GeV single-ring e-like sample is further separated as follows:

> Number of decay electrons $> 0 \rightarrow \nu_e$ -like Number of decay electrons $= 0 \rightarrow \overline{\nu}_e$ -like

Atmospheric neutrinos v_e / \overline{v}_e separation – Multi Ring

Atmospheric neutrinos v_e / \overline{v}_e selection efficiency

Beam neutrinos CP violation phase

Measure $\underline{\nu}_e$ appearance from $\underline{\nu}_\mu$ beam ...and $\overline{\nu}_e$ appearance from $\overline{\nu}_\mu$ beam

If lucky exclude $\delta_{CP}=0$ with 5σ in a few years

In 10 years (and 1 tank), exclude $\delta_{CP}=0$ with 5 σ for 58% of possible vales of δ_{CP}

Atmospheric neutrinos Neutrino Mass Hierrarchy

Measure v_e and $\overline{v_e}$ as a function of energy and zenith angle

in a simultaneous fit to improve parameter precision!

Beam+Atmospheric neutrinos Expected sensitivities vs running time

Beam+Atmospheric neutrinos Constraints on CP violation phase

Assuming 1 tank for 10 years

Testing SuperNova Neutrino Models

Discrimination between models based on average energy and event rate as a function of time

Pre-SuperNova neutrinos

A significant fraction of the signal is above threshold for IBD.

ge Duration ν_e (raction Average ν energy
300 years	% 0.71 MeV
140 days	0.99 MeV
180 days	% 1.13 MeV
Last burnin 2 days	tage % 1.85 MeV
Last burnin 2 days	tage % 1.85 M

Important role as alert of an imminent SN for multimessenger astronomy

Large benefits

from Gd loading

SuperNova relic neutrinos (SNR)

Solar neutrino Upturn

Solar neutrino Day-night asymmetry

Asymmetry due to MSW effect Sensitivity (sigma) ΗK 10 **Reactor** neutrino 8 oscillation 6 **Systematic** uncertainty

12

14

16

8

6

10

20

Year

18

0 0

2

Proton decay

Only realistic chance of achieving $au(p
ightarrow e^+ \pi^0) > 10^{35}$ years

Expected sensitivities

Prospect is relative to **two** identical tanks: operating for 10 years (1st) 4 years (2nd)

Neutrino beams	Physics Target	Sensitivity
Beam $(1.3 \mathrm{MW} \times 10^7 \mathrm{sec})$	$\delta_{\mathrm CP} \ (0^\circ, 90^\circ)$	7° - 21°
	CPV coverage $(3\sigma/5\sigma)$	78%/62%
	$\sin^2 \theta_{23}$ error (for 0.5)	± 0.015
Atmospherics+Beam	MH determination $(\sin^2 \theta_{23} = 0.40)$	$> 5.3\sigma$
	Octant $(\sin^2 \theta_{23} = 0.45)$	5.8σ
Proton Decay (90% C.L.)	$p \to e^+ + \pi^0$	$1.2 \times 10^{35} \text{ yrs}$
	$p \rightarrow \bar{\nu} + K^+$	$2.8 \times 10^{34} \text{ yrs}$
Solar	Day/Night (from 0/ from KamLAND)	$12\sigma/6\sigma$
	Upturn	$\sim 5\sigma$
Supernova	Burst	104k-158k
	Nearby galaxies	$2\sim 20$ events
	Relic	98 events/4.8 σ

Collaboration

Collaboration	About 400 people from all around the world but still growing
Publication	Need 1 year of activity in the collaboration before signing papers
Shift/meeting	 At least 2 weeks of shifts in Kamioka per year Take into account other 2 weeks in Japan per year There are around 8 meetings in Japan per year
INFN	SK and T2K are different collaborations, but HK will be a single one
Laboratory	 Quality assurance of mPMTs and electronics Other similar activities in conflict with French group Collateral R&D activities with Padova group
Analysis	 There are Italian contributions to T2K Room for micromegas signal reconstruction Not large activities on HK so far
Analysis policy	 SK analysis is divided in low energy and high energy with informal policies T2K analysis requires analysis note and a more formal review committee HK will likely follow T2K style but this point has not been discussed yet