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Working principle of a sampling ECAL

• Electromagnetic Calorimeters (ECALs) measure the incident particles’ energy ( , ) 
providing position information, too


• Two main materials involved:


‣ Scintillator (active): converts the incident particles’ energy into light

‣ Absorber (passive): generates the electromagnetic shower and absorbs the 

energy


• The produced light has to be propagated to the photodetectors


• Finally, the photodetectors (e.g. PMTs) create the signals

e± π0
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(Scintillator-based)



LHCb ECAL Upgrade II
• Currently: sampling ECAL composed of 

Shashlik modules


• Radiation doses ~ 1 MGy foreseen for Run 5 
and Run 6


• Luminosity up to 1.5 x 1034 cm-2 s-1


• The high luminosity environment will require:

‣ Time resolution ~ few tens of 

picoseconds 
‣ Radiation hardness 
‣ Energy resolution at the level of the 

current one (10% sampling term, 1% 
constant term)
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Scheme of a currently-used Shashlik module (Irina Machikhiliyan and 
LHCb calorimeter group. https://iopscience.iop.org/article/

10.1088/1742-6596/160/1/012047)

Expected radiation dose for the High Luminosity phase, in Gy (“Framework TDR for 
the LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era.” 

https://inspirehep.net/literature/2707810)

https://iopscience.iop.org/article/10.1088/1742-6596/160/1/012047
https://iopscience.iop.org/article/10.1088/1742-6596/160/1/012047
https://inspirehep.net/literature/2707810


LHCb ECAL Upgrade II

• Future: Spaghetti Calorimeter (SpaCal) 


• Scintillating fibres inserted into a dense passive 
absorber

‣ Fibres: polystyrene / garnet crystal

‣ Absorber: lead (Pb) / tungsten (W)
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Scheme of a SPACAL module featuring a double-side readout 
(“Framework TDR for the LHCb Upgrade II: Opportunities in flavour physics, and 

beyond, in the HL-LHC era.” https://inspirehep.net/literature/2707810))

Picture of a Pb-
polystyrene prototype 
in a test-beam setup

➡  Run 4: 
‣ W-Poly

‣ Single-side readout

➡  Run 5 & 6: 
‣ W-Crystal and Pb-Poly

‣ Double-side readout

https://inspirehep.net/literature/2707810
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Z 
300 mm
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121.2 mm
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Module

(absorber + fibers)

PMT

PMT

PMT

Z axis

Electron

3 x 3 PMTs 
array

Mirror Energy depositions (1 GeV)

• Goal: study the time resolution of a simulated 
module using GEANT4


• 1000 incident e- at 1 GeV and 10 GeV

• 3°/3° angles (w.r.t. x and y axes)

• Module under study: Pb + Polystyrene

• Single side readout (back)

• 3 x 3 cells, each one read out by a PMT
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Simulation of the photons
Each optical photon has:


• Deposition time = time stamp of the single energy 
deposition which triggers the scintillation


• Generation time = time required by the scintillation 
process to generate the photon


• Propagation time = time to reach the PMT window
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(where the incident electron is created at t = 0)

ttotal = tdeposition + tgeneration + tpropagation
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Simulation of the photons
Each optical photon has:


• Deposition time = time stamp of the single energy 
deposition which triggers the scintillation


• Generation time = time required by the scintillation 
process to generate the photon


• Propagation time = time to reach the PMT window

(where the incident electron is created at t = 0)
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PMTs simulations

• 1024 samples in 204.8 ns time window             ps


• SPTR (or TTS, Transit Time Spread)


• Amplitude fluctuations following a Gamma pdf:

Δt = 200
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p(x) = 1
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Single photoelectron pulse:                f(t) = A ⋅ t2 ⋅ e−t/τ A =
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Single p.h.e. pulses
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What is the “time stamp” of a signal?

t t t

https://en.wikipedia.org/wiki/Constant_fraction_discriminator

Fixed threshold CFD
• Time stamp computed with the “Constant Fraction 

Discriminator” (CFD) algorithm


• Time stamp = time at which the signal exceeds a 
defined fraction of the pulse’s amplitude


• The “best” fraction must be properly chosen in order 
to optimize the time resolution


• Time resolution = std. dev. of the time stamps sample

https://en.wikipedia.org/wiki/Constant_fraction_discriminator


First results

• As expected, better resolution at higher 
energies (photostatistics contribution)


• Slow PMTs perform better
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    Why? 

➡ Slow PMTs are less affected by the 
longitudinal fluctuations of the 
showers



Why are slower PMTs better ?
• Shower depth and time stamp are correlated. For deeper showers:


‣ Direct photons arrive earlier to the PMT   —>   Negative correlation

v > c/n v = c/n
Propagation 

time
Deposition 

time

Light

v > c/n v = c/n
Propagation 

time
Deposition 

time

Light

“Surface” event “Deep” event

e- e-

15

• Barycenter of the 
energy depositions 

• Direct photons

More info in backup slides



Why are slower PMTs better ?
• Shower depth and time stamp are correlated. For deeper showers:


‣ Direct photons arrive earlier to the PMT   —>   Negative correlation

‣ Reflected photons arrive later   —>   Positive correlation


➡  The CFD time stamp is biased by the shower depth 
➡  This bias worsens the time resolution
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• Barycenter of the 
energy depositions 

• Reflected photons 

• Direct photons

More info in backup slides



Why are slower PMTs better ?
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• This effect is more relevant for fast PMTs (they better distinguish between direct and reflected photons)

• It affects the shape of the PMTs signals   —>   The CFD method can’t take it into account

• It depends on the CFD threshold 

‣ Low thresholds mostly detect direct photons

‣ For some thresholds the two correlations partially cancel out each other, removing the overall bias
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10 GeV 
Tau = 0.1 ns 

“Fast”

10 GeV 
Tau = 2.0 ns 

“Slow”

More info in backup slides



Correction procedure
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• Polynomial fit to the profiled scatter plot of time stamp  vs shower 
depth of each event


➡  Find the correction curve    

• Corrected time stamp for the jth event defined as:   


• The best CFD threshold after the bias correction may be different

t

f
̂tj = tj − fj



Results
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• Corrected resolution = std. dev. of the 
unbiased time stamps 


• Faster PMTs (lower ) undergo wider 
corrections 

• The best CFD threshold after the correction is 
always ~ 10% or ~ 90%

‣ At these levels: correlation between time 

stamp and shower depth is maximum

‣ Highest corrections

̂t
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Prototypes

• SpaCal W-Polystyrene


• 4 cells only (4.5 x 4.5 cm2)


• 5 cm - square to octagon light guides


• Kuraray SCSF-78 (blue) or 3HF (green) fibres


• Readout with 4 different PMTs:

‣ R7600U, R9880U, R14755U, R11187 

(a.k.a. Tilecal)

“Small module”
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• SpaCal W-Polystyrene


• Full-size module: 16 cells (12.1 x 12.1 cm2)


• 10 cm - square to octagon light guides


• Kuraray SCSF-78 (blue) fibres


• Readout with R9880U PMT

“Module 0”

More info in backup slides



Time resolution model
• The time resolution as a function of the number of photons impinging the PMTs is well 

described by


• Assuming linearity:      (energy of the incident )Nph ∝ E e−
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σT(E) =
a′￼

E
⊕

b′￼

E
⊕ c′￼

σT(Nph) =
a

Nph
⊕

b

Nph

⊕ c
• Noise term

• Sampling term

• Constant term



Time resolution model
• Noise term: caused by the electronic noise fluctuations


• Faster PMTs (quicker rise time) lead to smaller noise terms


• When exploiting the CFD algorithm, it can be estimated as


• If it is subtracted in quadrature, the resolution as a function of the energy becomes
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σTnoise
=

2
3

σn

dA/dt

σT(E) =
b′￼

E
⊕ c′￼

•  = std. dev. of the 
electronic noise


•  = pulse’s amplitude

σn

A

Ref: Eric Delagnes, June 2016, “What is the theoretical 
time precision achievable using a dCFD algorithm?”

https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm
https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm
https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm
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Time resolution results - Small module
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•SCSF-78 results are systematically better due to faster decay time of the fibres

•SCSF-78 fibres: slow PMTs (R7600U and Tilecal) perform better  —>  Less biased by shower depth

•3HF fibres: best results for PMTs with Extended Red Multi Alkali (ERMA) photocathode
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Correction to the time stamp
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Example with small module

R14755U


E = 100 GeV

• Polynomial fit to the profiled scatter plot of time stamp  vs rise 
time of each signal  —>  Find the correction curve   


• Corrected time stamp for the jth event defined as:   


• The corrected time resolution is the standard deviation of  

t
f

̂tj = tj − fj

̂t

Simulations show that the rise time is highly correlated to the 
shower depth


➡  Idea: exploit the rise time to remove the bias

More info in backup slides
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Corrected resolution - Small module with SCSF-78 fibres
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Corrected resolution - Small module with 3HF fibres
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Corrected resolution - Small module
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• As expected, fast PMTs (R9880U and R14755U) undergo wider corrections

• Still not enough for the fast PMTs to do better than R7600U

• The best threshold is always ~ 10% or 90%

28



“Module 0” vs “Small module”

• Both equipped with SCSF-78 fibres and 
R9880U PMT


• Module 0 performs better 
‣ Down to 17 ps at 100 GeV


• Differences probably caused by different light 
guide length

‣ 10 cm (module 0) vs 5 cm (small module)

‣ Different photons loss
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The Hamamatsu R14755U-100 PMT
• Candidate PMT for the future LHCb ECAL thanks to its 

fast response

• Low gain, 6 dynode stages
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attenuation filtersPowermeter LEDPMT
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Typical single photoelectron signal

Figures from the Hamamatsu data sheet

(https://www.hamamatsu.com/content/dam/hamamatsu-photonics/

sites/documents/99_SALES_LIBRARY/etd/
R14755U-100_TPMH1380E.pdf)

https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R14755U-100_TPMH1380E.pdf
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R14755U-100_TPMH1380E.pdf
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/R14755U-100_TPMH1380E.pdf


Ageing campaign & experimental setup
• Ageing affects the PMT performances:


‣ Wear of the dynode system

‣ Increase of the dark current

‣ Decrease of the photocathode efficiency


• Goal: study the variation of the PMT gain up to 500 C of 
integrated charge


• Order of 10’000 C expected for new ECAL readout PMTs
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Experimental setup & method
• Ageing performed with a white LED light continuously impinging the PMT


• Gain measurements: using a laser light ( ), temporarily switching off the LED

• Measure the power (P) of the laser


➡  get the number of photons per second impinging the PMT window:


• By measuring the anodic and dark current, we get the gain:


• Procedure validated by measuring the gain of another PMT 
also with another method (compatibility within 12%)

λ = 405 nm
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Laser with 
attenuation filtersPowermeter LEDPMT
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QE ⋅ P ⋅ λ

⋅
(Ianode − Idark)

qe−



Gain and HV
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• The PMT gain grows with the applied voltage following:


• Each time, the gain has been measured from 200 V to 1000 V 
(with 100 V steps)


• Power-law fit to the data to get    and  α G0

G = G0 ⋅ Vα
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Results
• Quick drop in the first 50 C

• Then, stable and slow decrease up to 500 C

• Overall decrease by a factor 2

• Same behaviour at all the applied voltages
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Conclusions - Time resolution

• The signal formation inside the single-side readout SpaCal modules has been studied by means of 
GEANT4 simulations


• The time resolution is worsened by the longitudinal fluctuations of the showers affecting the pulses’ shape

➡ The CFD algorithm can’t take this into account 

• A procedure aiming at removing the shower depth bias has been developed and applied to testbeam data, 
exploiting the signals’ rise time

Simulation studies

37



Conclusions - Time resolution
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• A procedure aiming at removing the shower depth bias has been developed and applied to testbeam data, 
exploiting the signals’ rise time

Simulation studies
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• A comparison among 4 PMT models and 2 types of fibres has been performed for two SpaCal W-
Polystyrene modules


• Resolutions below 20 ps obtained at high energies

➡  Good timing capabilities of the SpaCal even in single-side readout mode

SPS Testbeam data



Open questions  &  Outlook

• What is the physical origin of the sampling and constant terms of the time resolution?


• Why do fast PMTs still do worse than R7600U after the correction procedure?

‣ Corrections are never ideal

‣ CFD + polynomial fit may not be the best approach


• The CFD algorithm may not be the best one 

➡ Is there a better way to define the time stamps? 
‣ A Machine Learning method will be tested in the near future
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Conclusions - Ageing campaign

• An ageing campaign of the Hamamatsu R14755U-100 PMT has been carried out up to 500 C


• The gain has been measured at applied voltages between 200 V and 1000 V

‣ Stable decrease (up to 500 C) 
‣ Same behaviour at all the applied voltages


• The PMT showed a very good (slow) aging behaviour


➡  Good candidate for the future LHCb ECAL in terms of ageing
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Thank you for your attention
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Backup slides
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To get an idea:

43

Hamamatsu R7600U-00-M4 
FWHM ~ 2.1 ns


Tau ~ 0.6 ns

Hamamatsu R14755U-100 
FWHM ~ 0.68 ns


Tau ~ 0.2 ns
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• Only the central PMT is considered


• Time resolution = std. dev. of the time stamps sample


• Rise time: time between the 10% and 90% of the 
pulse’s amplitude


• In general the shapes are not gaussian


• Presence of outliers

Example here:


• Tau = 1.0 ns (FWHM = 3.4 ns)


• CFD fraction = 40%




CFD fraction scan

• The best CFD threshold tends to decrease for slower PMTs

• Best values always between 20% and 70%
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Tau = 0.1 ns 
(FWHM = 0.35 ns)
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Tau = 2.0 ns 
(FWHM = 7 ns)



Why are slower PMTs better ?
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• Arrival time to the PMT window:    


• Corrections to the time resolution are negligible

ttotal = tgeneration



Why are slower PMTs better ?
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• Arrival time to the PMT window:    


• ~45 ps worsening of the biased resolution

• ~40 ps corrections, homogeneous behaviour in the parameter space

ttotal = tgeneration + tdeposition
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Why are slower PMTs better ?
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• Arrival time to the PMT window:    


• Best resolutions: when the two correlations (reflected/direct photons) cancel out each other

• After correction: more homogeneous behaviour in the parameter space

ttotal = tgeneration + tdeposition + tpropagation

10

20

30

40

50

60

Resolution (ps)

0.10 0.25 0.60 1.00 1.30 1.60 2.00

 (ns)τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
FD

 fr
ac

tio
n

49.7

54.6

55.9

58.8

58.1

55.1

47.3

45.2

68.7

52.1

53.4

53.0

51.0

46.1

38.4

30.3

29.8

47.2

48.4

41.1

34.2

26.4

19.1

15.2

18.2

28.1

37.8

38.6

27.7

18.4

12.1

12.3

17.8

24.2

32.8

41.9

33.3

20.1

11.8

10.7

15.8

22.1

29.0

35.3

43.8

28.0

14.0

9.3

13.1

19.1

25.1

31.0

36.3

43.0

21.3

10.2

10.6

16.4

22.3

27.7

32.1

36.3

40.9

Resolution (ps)

10

15

20

25

30

35

Corrected resolution (ps)

0.10 0.25 0.60 1.00 1.30 1.60 2.00

 (ns)τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
FD

 fr
ac

tio
n

8.6

7.3

7.2

8.5

11.0

16.1

23.6

34.0

38.3

7.9

7.5

8.1

9.6

11.8

14.2

17.6

21.1

23.6

7.6

7.7

8.6

9.5

10.2

10.6

10.6

11.0

9.8

7.2

7.7

7.9

8.0

7.9

7.7

7.2

7.0

6.8

7.4

7.3

7.4

7.0

6.7

6.3

6.1

5.8

6.1

7.3

6.8

6.5

6.2

5.8

5.6

5.4

5.4

5.9

6.6

6.6

5.9

5.5

5.3

5.1

5.1

5.2

5.6

Corrected resolution (ps)



Why are slower PMTs better ?

51

• Arrival time to the PMT window:    


• Only direct photons considered 
• Homogeneous behaviour in both cases

ttotal = tgeneration + tdeposition + tpropagation
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Shower depth vs rise time
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• High correlation between shower depth and rise time:

‣ Deeper showers present a higher spread in the Z direction

‣ Deeper showers feature more separated peaks in the propagation time distribution of 

the photons



SPS testbeam setup
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• June 2024 at the CERN Super Proton 
Synchrotron (SPS)


• ~ 2 weeks of data-taking


• Characterization of SpaCal and Shashlik 
prototypes


•  and hadrons beams (20 GeV - 100 GeV)e−

• Trigger: scintillators + PMTs


• Timing reference: MCPs ( )


• Tracking: DWCs ( )


• Prototype inside a thin and dark 
experimental box


• Digitizer:  (  sampling 
period)

σ ≃ 15 ps

σxy ≃ 200 μm

5 × 109 Hz 200 ps

Experimental setup
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Few technical details

• Spatial selection: 10x10 mm2 around the 
centre of one cell


• R7600U and R9880U feature Extended Red 
Multi Alkali (ERMA) photocathodes


• R9880U and R14755U are the fastest ones

SCSF-78 3HF

R7600U 12% 12%

R9880U 15% 18%

R14755U 26% 10%

Tilecal / /

Quantum efficiency

(Taken from data sheet)

FWHM (ns) Rise time (ns)

R7600U 3.2 1.6

R9880U 1.25 0.57

R14755U 0.68 0.4

Tilecal / /

Single photoelectron pulse

(Taken from data sheet)



Small module - fit parameters
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Before correction Sampling term

(ps x GeV1/2) Constant term (ps)

R7600U 113 ± 3 14.5 ± 0.5

R9880U 169 ± 4 18.8 ± 0.6

R14755U 148 ± 5 24.8 ± 0.6

Tilecal 95 ± 4 14.4 ± 0.5

SCSF-78 fibres

Before correction Sampling term

(ps x GeV1/2) Constant term (ps)

R7600U 174 ± 3 14.1 ± 0.8

R9880U 223 ± 7 19.6 ± 1.4

R14755U 116 ± 12 48.6 ± 0.6

Tilecal 303 ± 6 27.4 ± 1.2

3HF fibres

After correction Sampling term

(ps x GeV1/2) Constant term (ps)

R7600U 103 ± 3 13.5 ± 0.4

R9880U 127 ± 3 16.9 ± 0.5

R14755U 87 ± 5 23.4 ± 0.4

Tilecal 92 ± 4 14.5 ± 0.5

After correction Sampling term

(ps x GeV1/2) Constant term (ps)

R7600U 157 ± 4 14.5 ± 0.7

R9880U 179 ± 7 21.0 ± 1.0

R14755U 202 ± 5 20.5 ± 0.9

Tilecal 293 ± 6 29.5 ± 1.1
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Sampling term 
(ps x GeV1/2)

Constant term 
(ps)

Small module 169 ± 4 18.8 ± 0.6

Small module 
(corrected) 127 ± 3 16.9 ± 0.5

Module 0 175 ± 5 12.9 ± 1.1

Module 0 
(corrected) 130 ± 5 12.5 ± 0.8
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W-Poly small module vs module 0

Small module vs module 0 - fit parameters



Uncertainties

• Several sources of uncertainties

‣ Quantum efficiency not precisely known 

(taken from producer’s data sheet)

‣ Laser instability affecting the measurements

‣ General electronic noise


• Fluctuations presenting a long period (~ 1 minute) 
when measuring  Ianode
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N.B. These are not precision measurements 
and these uncertainty values are preliminary


