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Pile-up in proton-proton collisions

• Protons circulate in the LHC arranged in bunches, each
containing ∼ 1011 particles, to reach high instantaneous
luminosities

• At each bunch crossing, many interactions happen simultaneously

=⇒ The interaction with the highest total energy is called hard
scatter while all other collisions are referred to as pile-up

• Pile-up is a background component =⇒ has to be mitigated

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions
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Pile-up in ATLAS

• ATLAS is one of the general purpose detectors at the LHC

=⇒ It operates at very high luminosities

=⇒ Measurements include a lot of pile-up

In the simulations used for these studies:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResultsRun2

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResultsRun3
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Topological clusters

• Group of geometrically close calorimeter cells showing a signal
with high enough significance

ςEM
cell = EEM

cell / σEM
noise, cell

Measured (uncalibrated) cell energy
Average expected noise

• They are used as inputs for jet reconstruction

! Each topocluster can contain contributions from both PU and HS

• Current PU-suppression methods are based on tracks (PFlow),
momentum (CS + SK) or cell timing (since Run 3)

https://cms.cern/news/jets-cms-and-determination-their-energy-scale

https://doi.org/10.48550/arXiv.1603.02934
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Digging deeper: why PU suppression?

• The presence of PU can either add energy to the HS topoclusters
or create new clusters

• The topocluster response distribution is wider in high PU
conditions

Response
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EEM
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(uncalibrated)

Edep = deposited energy in the
cluster (truth energy)

=⇒ PU suppression can improve energy calibration
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Effects of PU on cluster response

• REM
clus has a non-trivial distribution

• PU contributions result in a pronounced right tail

• Higher distance between the mean and the median =⇒ more
skewness
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especially important for
low-energy clusters
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Key idea

• Goal: Suppress pile-up contributions to calorimeter topoclusters

• Strategy:

- Distinguish, using Deep Neural Networks:

1 Clusters with only pile-up contributions (PU-only)

2 Clusters with contributions from both hard scatter and
pile-up (Mixed)

3 Clusters with only hard scatter contributions (HS-only)

- Remove (1) from jet reconstruction inputs

- Correct (2) to remove pile-up contributions

• Two DNNs have been implemented for this purpose:

- One to identify HS-only clusters

- One to identify PU-only clusters
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Network(s) Overview

• The networks have the same structure, optimized for the
HS-only identification task, with the Run 2 MC Simulation

• Architecture:

- 512 nodes (ReLu)→ batch normalization

- 256 nodes (ReLu)→ batch normalization

- 128 nodes (ReLu)→ batch normalization

- 64 nodes (ReLu)→ batch normalization → 30% dropout

- 32 nodes (ReLu)→ batch normalization → 30% dropout

- 16 nodes (ReLu)→ batch normalization

- 1 node (sigmoid)

• Performance score: ROC-AUC

• Loss: binary crossentropy

G. Fazzino Suppressing pile-up contributions in the formation of topological clusters in ATLAS 11 / 22
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Input Features Choice

• Not all the topocluster features are important for these tasks, thus
the feature number can be reduced

1 Keep only features with correlation below 75%

2 Evaluate feature permutation importance for the remaining set
of (24) features

3 Remove features with low importance

4 Final set: 14 (13) input features

=⇒ The most important features will also be less pile-up robust

Permutation importance

Shuffle randomly the values of one feature at a time and look at
how much the performance (here the ROC-AUC) changes

G. Fazzino Suppressing pile-up contributions in the formation of topological clusters in ATLAS 12 / 22
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Input Features

1 Cluster probability to be
generated by an EM shower

2 Distance of the cluster from
nominal vertex

3 Weighted first moment of cell
signal density distribution

4 Distance of the cluster from
calorimeter frontface

5 Fraction of energy in EM
calorimeter

6 Cluster timing

7 Total number of cells in the
cluster

8 Cluster isolation

9 Signal quality in Tile
calorimeter

10 Variance of cell timing
distribution

11 Signal quality in LAr
calorimeter

12 Second moment of radial
distances of cells to the
principal cluster axis

13 Energy dispersion
perpendicular to main cluster
axis

14 Cluster energy (solely for
HS-only identification)
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Data

• 2018 (Run 2) & 2023 (Run 3) simulated di-jet samples

• Jet pT < 1800 GeV

• 13 input cluster features

• 2 classes of clusters:

1 PU-only: Edep < 1 MeV and REM
clus > 4

2 Mixed: Edep > 1 MeV or REM
clus < 4

• Is the definition fine?

✓ In a HS-only sample, taken from a simulation without
pile-up, only a fraction of 2 · 10−5 clusters satisfies (1)
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Feature Importance
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Run 2

• PU-only clusters are smaller (lower number of cells) and more
isolated

• Very similar results for Run 3
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Classification Output
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• The highest
possible output
is never reached

• Good separation
in both cases

• Could be
improved with a
more strict
mixed clusters
definition
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Classification Performance
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Run 3

• High AUC in both cases

• Pile-up suppression strategy:

1 Choose a threshold on the
network output (here: upper
corner of the ROC curve)

2 Keep only clusters with
output below the threshold
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Topocluster Response After Pile-Up Suppression
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Run 3

• High IQR before
suppression
because PU-only
clusters can have
very high responses
(small denominator
in REM

clus)

• The IQR decreases
remarkably after
PU-suppression

IQR Before After
Run 2 834 1
Run 3 1849 26
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Summary

• The presence of pile-up degrades collider measurements,
especially at high luminosity

• The topocluster response worsens with high pile-up. It could be
improved by:

- Removing pile-up only clusters

- Suppressing pile-up contributions in mixed clusters

• A definition of pile-up-only clusters in MC simulations can be
obtained based on their energy and response

• Suppressing pile-up-only clusters results in a more narrow
distribution for REM

clus, with its IQR decreasing by:

- 3 orders of magnitude in Run 2

- 2 orders of magnitude in Run 3
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Outlook: Where Could This Go Next?

• The pile-up contributions in mixed clusters could be quantified by
using the DigiTruth method https://cds.cern.ch/record/2677419

• One multi-class DNN could be implemented to classify all three
classes at the same time

• The topocluster classification network could be combined with
the one used for energy calibration

• The possibility to define mixed clusters more strictly could be
explored

Thank you for listening!
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the one used for energy calibration

• The possibility to define mixed clusters more strictly could be
explored

Thank you for listening!
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Backup – PU suppression at topocluster level

• Constituent Subtraction + Soft Killer:

- Divide the event in patches and evaluate pile-up density
ρ = median

i∈pathces

{
pT,i
Ai

}
- CS: overlay the event with ghosts, whose momentum is

determined by ρ, and modify the topoclusters momentum by
subtracting those of the close-by ghosts

- SK: impose a momentum threshold, chosen as the minimal
cut for which ρ = 0

• Since Run 3: if a cell time is outside the collision time window
(|tcell| > 25 ns) and its significance is below 10, it isn’t included in
the topocluster
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Backup – PU suppression with PFlow objects

• Particle Flow objects are built by trying to match each topocluster
to a track

=⇒ PU contributions coming from charged vertices are naturally
suppressed

• Neutral contributions are suppressed by Pile-Up Per Particle
Identification (PUPPI):

- Assign to each neutral object a probability αi to originate
from the primary vertex (based on its proximity to charged
HS products)

- Use the distribution of α for charged PU products as a
reference (let’s call its mean value ᾱ and RMS σ)

- Remove objects with αi < ᾱ, re-weight the others as:
w = Fχ2(Θ(αi − ᾱ)αi−ᾱ

σ2 )
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Backup – Topocluster Energy Calibration

• Two possible methods:

1 Local Hadronic Cell Weighting (LCW) calibration
(currently used):

https://doi.org/10.1140/epjc/s10052-017-5004-5

2 Machine Learning based calibration:

- A DNN reconstructs the topocluster response RDNN

- The true energy is Edep = EEM
clus/RDNN

https://cds.cern.ch/record/2866591
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Backup – Formulae for Network Description

• ReLu function: f(x) = max{0, x}
• Sigmoid function: f(x) = 1

1+e−x

• Binary cross-entropy:

L(y, p) = − 1
N

∑N
i=1 [yilog(pi) + (1 − yi)log(1 − pi)]

- Weight of each term: wi =
N

2·Ni

• Permutation importance of feature j,evaluated with K
repetitions:

ij = s − 1
K

∑K
k=1 sk,j

- s is the network score

- sk,j is the score after shuffling feature j, in repetion k
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Backup – Feature importance in Run 3
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Backup – Feature Distributions, PU Identification – I
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Backup – Feature Distributions, PU Identification – II
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Backup – Feature Distributions, PU Identification – III
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Backup – Feature Distributions, PU Identification – IV
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Backup – Feature Distributions, PU Identification – V
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Backup – Feature Distributions, PU Identification – VI
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Backup – Feature Distributions, PU Identification – VII

0 1000 2000 3000
2
t (ns2)

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

nu
m

be
r o

f c
lu

st
er

s Mixed, R < 4
Mixed, R 4
PU-onlyRun 2

0 2500 5000 7500 10000 12500
2
t (ns2)

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

nu
m

be
r o

f c
lu

st
er

s Mixed, R < 4
Mixed, R 4
PU-onlyRun 3

G. Fazzino Suppressing pile-up contributions in the formation of topological clusters in ATLAS 12 / 20



Backup – Probability to Be PU-Only of Mixed Clusters

0.0 0.2 0.4 0.6 0.8 1.0
Probability to be a pile-up-only cluster for mixed clusters

0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f c
lu

st
er

s

Mixed, REM  4
Mixed, REM <  4

Run 2

0.0 0.2 0.4 0.6 0.8 1.0
Probability to be a pile-up-only cluster for mixed clusters

0

20000

40000

60000

80000

Nu
m

be
r o

f c
lu

st
er

s

Mixed, REM  4
Mixed, REM< 4

Run 3

G. Fazzino Suppressing pile-up contributions in the formation of topological clusters in ATLAS 13 / 20



Backup – PU Identification, Loss Curves

Run 2

Run 3
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Backup – HS Identification, Output

• Same jet pT and simulated years as PU Identification

• HS-only: simulation without pile-up

• Mixed: full simulation, clusters from events with µ > 20 to avoid
including HS-only

• Classification output:

• Worse for Run 3, possibly due to the additional PU
suppression
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Backup – HS Identification, Feature Importance
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Backup – HS Identification, Feature Importance
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Backup – HS Identification, Loss Curves
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Backup – HS Identification, Performance
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• Worse performance for Run 3

- Possibly due to additional PU suppression in Run 3 (timing
cut)
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Backup – HS Identification, Responses
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