

Asymmetries in rare three-body charm decays with electrons at LHCb

Presented by: Lorenzo Nisi Supervised by: Dr. Dominik S. Mitzel, Dr. Serena Maccolini

Matter-antimatter asymmetry

The huge **imbalance** between matter and antimatter in the universe (**CP asymmetry**) is not explained by the standard model for particle interactions (**SM**)

New Physics (NP) may be related to **new sources of CP violation**.

CP and forward-backward (**FB**) **asymmetries** for many decay processes can be used as **null tests** for the SM .

$c \rightarrow u$ transitions and D decays

Flavor-changing neutral currents only happen via **loop diagrams** in SM.

- $c \rightarrow u$ transitions **extremely suppressed** due to:
 - **CKM** elements ($\lambda_i = V_{ci}^* V_{ui}$, $\xi_b = \lambda_b / \lambda_s$)
 - **GIM** mechanism $(f_i \sim (m_i/4\pi m_W), f_s f_d \sim 0)$

Branching fraction of $D^+ \rightarrow \pi^+ e^+ e^-$ is **dominated by intermediate resonances** such as $D^+ \rightarrow \pi^+ (\phi \rightarrow e^+ e^-)$.

$$A_{c \to u} \propto \lambda_s \left[(f_s - f_d) + \xi_b (f_b - f_s) \right]$$

c

What is A_{FB} ?

 A_{FB} is a **parity** asymmetry.

Acceptance corrections needed.

 A_{FB} is measured separately for **both D**⁺ and **D**⁻.

The two measurements can then be **combined**.

Strategy

NP could induce non-zero asymmetries:

$$A_{CP}^{raw} = \frac{N(D^+) - N(D^-)}{N(D^+) + N(D^-)}$$
$$A_{FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

 A_{CP} depends on the **strong phase** difference between NP and resonance.

The integrated A_{CP} may cancel.

Measurement is performed in **two bins** of dilepton mass in order to be **sensible to this effect**.

[https://link.springer.com/article/10.1140/epjc/s10052-020-7621-7]

CP asymmetry

It is possible to extract A_{CP}^{raw} from data, but there are **nuisance asymmetries**.

$$A_{CP}^{raw} = A_{CP} + A_{det}(\pi) + A_{prod}(D)$$

Nuisance asymmetries are extracted with a **control** channel $(D^+ \rightarrow \pi^+ K_s)$ with negligible A_{CP} .

$$A_{CP}^{raw}(D^+ \to \pi^+ K_s) = A_{det}(\pi) + A_{prod}(D)$$
$$A_{CP}(D^+ \to \pi^+ e^+ e^-) =$$
$$A_{CP}^{raw}(D^+ \to \pi^+ e^+ e^-) - A_{CP}^{raw}(D^+ \to \pi^+ K_s)$$

LORENZO NISI

Data

Data used for the analysis has been collected during **Run 2** from 2015 to 2018 at **LHCb**.

The LHCb detector is **designed** for **indirect searches** for NP in decays of **heavy flavored** hadrons (*c*, *b*).

The analysis requires good **vertex reconstruction**, **momentum resolution** and particle identification (**PID**).

Electrons at LHCb

Electrons emits **bremsstrahlung** photons.

This leads to **complications** during **energy reconstruction**.

Bremsstrahlung reconstruction in the **calorimeter** is flawed:

- 1. Resolution effects
- 2. Non-reconstructed photons
- 3. Random photons

Dilepton-mass reconstruction

Reconstructed dilepton mass distribution **doesn't** represent correctly the one of the **true** m(ee).

Decay Tree Fitter variables use additional constraints and are in **better agreement** with the true distribution.

The **resolution** of the DTF m(ee) is ~18 MeV/c².

Analysis overview

- 1. Preselection
- 2. Multivariate analysis
- 3. Dataset components and cut optimization
- 4. Efficiency correction
- 5. Fit and results
- 6. Nuisance asymmetries

Preselection

- Impact Parameter for secondaries rejection: IP_PV < 0.06 mm
- Particle Identification (PID) for pion and electrons: ProbNNpi > 0.2, ProbNNe > 0.1 (ProbNNe to be optimised)
- •Ghost tracks rejection: TRACK_GhostProb < 0.2
- Combinatorial background rejection: LTIME>0 (for bkg can be negative, not for signal).

LORENZO NISI

Multivariate analysis

Wrong Sign data used as combinatorial background sample. All final state particles have same charge so it can't be signal.

MC used as **signal sample** (both D and D_s).

The chosen MVA algorithm is a **Boosted Decision tree**.

Kinematical, topological and **isolation variables** with **different distributions** for the two samples are chosen for the BDT.

Components of the dataset

Data can be described by 5 components:

- The signal components of the D and the D_s
- The misID components of the D and the $D_s (D^+ \rightarrow \pi^+ \pi^+ \pi^-)$
- The combinatorial background component

The signal and misID components distributions are obtained from MC. Combinatorial background distribution is obtained from WS data sample.

Data-driven 2D cut optimization

Fake asymmetry implemented to choose **best cuts** for **BDT response** and **probNNe**.

The **asymmetry uncertainty** is chosen to be the **figure of merit**.

Best cuts are BDT response > 0.15 and ProbNNe > 0.2.

Efficiency correction

Reconstruction efficiency not uniform over $(m(ee), \cos\theta)$ phase space.

Efficiency correction weights calculated using a **generated sample** with no **detector reconstruction** applied.

$$w(m(ee), \cos\theta) = \frac{f_{generated}(m(ee), \cos\theta)}{f_{selected}(m(ee), \cos\theta)}$$

Weights are mapped in a **binned phase space**.

The **binning** on the map is chosen **accordingly to the DTF resolution**.

Fit results

Data can be also divided into **brem categories** (mis-ID events are negligible in brem1).

Asymmetries are extracted by simultaneously fitting the dataset split by charge sign and sign of $\cos\theta$.

The values are **blinded** according to **LHCb regulations**.

 $low-m(ee) \in [960-1020] \text{ MeV/c}^2$

high- $m(ee) \in [1020-1080] \text{ MeV/c}^2$

	low-m(ee)	high-m(ee)
A ^{raw}	x±0.021	x±0.025
$A_{FB}^{D^+}$	x±0.026	x±0.036
$A_{FB}^{D^-}$	x±0.029	x±0.034

Fits projections

Nuisance asymmetry

Nuisance asymmetries are extracted from the **control channel** $D^+ \rightarrow \pi^+ K_s$.

The **kinematics** of the control channel **need to be reweighted** according to the kinematics of D and π from $D^+ \rightarrow \pi^+ e^+ e^-$.

Control and signal datasets have to be **background subtracted**.

The **kinematical variables** are then used in a **BDT** that is used for the **reweighting**.

Nuisance asymmetry

30/09/2024

LORENZO NISI

Nuisance asymmetry

Nuisance asymmetries are extracted by fitting the control channel.

The **uncertainties** are **neglible** if compared to the ones of the signal sample.

	low-m(ee)	high-m(ee)
A ^{raw}	(-3.81±0.55)*10 ⁻³	(-3.74±0.70)*10 ⁻³

Conclusions

The objective of this analysis is to measure for the **first time** A_{CP} and A_{FB} for $D^+ \rightarrow \pi^+ e^+ e^-$ across the ϕ resonance region. Those observables can be used as **null tests** for the SM as they could indicate to NP effects.

The **sensitivities** reached to this analysis amount to $\sim 2\%$ for A_{CP} and $\sim 3\%$ for A_{FB} .

The **results** are **blinded** and the evaluations of **systematic uncertainties** is yet to be performed. Source of systematics:

- Invariant mass shape description
- Efficiency correction uncertainties
- Imperfect kinematical reweighting
- Secondary contamination

The impact of those effects is expected to be **sub-leading** in respect to the statistical uncertainties.

Summary

- Flavor physics introduction and charmed meson decays
- Asymmetries
- Data and electron reconstruction
- Preselection
- Multivariate analysis
- Cut optimization
- Efficiency correction
- Fit Results
- Nuisance asymmetry

Backup

BDT Variables

BDT variables

CONEPTASYM (l1 & l2)

TRKISOBDT (h & D)

VTXISOBDT

AMAXDOCA

ENDVERTEX_CHI2

ETA

BPVDIRA

BPVLTIME

VTXISONUMVTX

VTXISODCHI2MASSTWOTRACK

BDT vs mass

LORENZO NISI

Signal mass-models

LORENZO NISI

26