From Spins to Strings

Jacob M. Leedom

WISPs in String Cosmology 24XX.XXXXX,24XX.XXXXX, PRL 130 (2023) 18, 181801 w/Carl Beadle, Diego Blas, Itay Bloch, Jeff Dror, Sebastian Ellis, Stefania Gori, & Nicholas Rodd

つくい

This talk: detecting Cosmic WISP Backgrounds (CWBs)

- This talk: detecting Cosmic WISP Backgrounds (CWBs)
- **.** WISPy States:
	- Axions
	- **Dark Photons**
	- **•** Gravitons

[Talks by: Andreas,Federico,Joao,Nicole,Margherita,Gonzalo]

つくへ

 \leftarrow

 \sim

 \sim

- This talk: detecting Cosmic WISP Backgrounds (CWBs)
- WISPy States:
	- Axions
	- **o** Dark Photons
	- **Gravitons**
- As Cosmic Backgrounds:
	- Cosmic axion Background (CaB) relic density of relativistic ultralight axions
	- hidden CMB (hCMB) population of ultralight dark photons
	- **Gravitational Wave Background (GWB)**

[Cicoli,Goodsell,Ringwald;'12] [Cicoli,Goodsell,Jaeckel,Ringwald;'11]

[Cicoli,Sinha,Deal;'22] [Cicoli,Hebecker,Jaeckel,Wittner;'22] Cicoli, Piovano: '18] [Conlon,Marsh;'13] [Cicoli,Conlon,Quevedo;'12]

つくへ

' '

4 ロ ▶ (何

[Talks by: Andreas,Federico,Joao,Nicole,Margherita,Gonzalo]

• Why are these interesting?

 \leftarrow

 \sim

 299

∍

- Why are these interesting?
- WISP states are common predictions of string models:

[Svrcek,Witten;'06]
|Arvanitaki,Dimopoulos,Dubovsky, [Arvanitaki,Dimopoulos,Dubovsky,
| Kaloper,March-Russel;'09]
[Cicoli,Goodsell,Ringwald;'12] [Cicoli,Guidetti,Righi,Westphal;'21]

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:
	- **•** Thermal
	- Perturbative Decay

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:
	- **•** Thermal
	- Perturbative Decay
- **Parametric Resonance**
- **Topological Defects**

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:
	- **a** Thermal
	- Perturbative Decay
- **Parametric Resonance**
- Topological Defects

Each production mechanism gives a different CWB momentum distribution - resolution gives insight into early universe physics

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:
	- Thermal
	- Perturbative Decay
- **Parametric Resonance**
- Topological Defects

Each production mechanism gives a different CWB momentum distribution - resolution gives insight into early universe physics

Detection can support ideas in string cosmology (i.e. an Axiverse) & probe cosmological history

- Why are these interesting?
- WISP states are common predictions of string models
- Numerous possibilities for production:
	- Thermal
	- Perturbative Decay

• Parametric Resonance

つくへ

• Topological Defects

Each production mechanism gives a different CWB momentum distribution - resolution gives insight into early universe physics

Detection can support ideas in string cosmology (i.e. an Axiverse) & probe cosmological history

How can we detect them?

Purely Gravitationally: ∆Neff

す口下

 \sim э

14. \sim \mathcal{A} \sim

×.

∍

∍

• Purely Gravitationally: △Neff

- **•** This would indicate existence
- How can we get some more fine-grained information?

 \sim \sim

 QQ

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs

 QQ

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs
- Why is this difficult?
	- Weakly Coupled

•
$$
\text{CaB: } \frac{1}{f_a}
$$
 • $\text{hCMB: } \epsilon$ • $\text{GWB: } \frac{1}{M_p}$

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs
- Why is this difficult?
	- Weakly Coupled

• CaB:
$$
\frac{1}{f_a}
$$
 • hCMB: ϵ • GWB: $\frac{1}{M_p}$

• Low Density

 $\rho_{\text{W}} \lesssim \rho_{\text{CMB}}$

Detection Suppression Factor: $\rho_{CMB}/\rho_{DM} \simeq 10^{-9}$

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs
- Why is this difficult?
	- Weakly Coupled

•
$$
\text{CaB: } \frac{1}{f_a}
$$
 • $\text{hCMB: } \epsilon$ • $\text{GWB: } \frac{1}{M_p}$

• Low Density

 $\rho_{\text{W}} \lesssim \rho_{\text{CMB}}$

Detection Suppression Factor: $\rho_{CMB}/\rho_{DM} \simeq 10^{-9}$

• Stochastic Signal

Coherence Time τ : If T< τ

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs
- Why is this difficult?
	- Weakly Coupled

•
$$
\text{CaB: } \frac{1}{f_a}
$$
 • $\text{hCMB: } \epsilon$ • $\text{GWB: } \frac{1}{M_p}$

• Low Density

 $\rho_{\text{W}} \lesssim \rho_{\text{CMB}}$

Detection Suppression Factor: $\rho_{CMB}/\rho_{DM} \simeq 10^{-9}$

• Stochastic Signal

Coherence Time τ : If $\tau < T$

- Assume coupling to Standard Model try direct detection
- Repurpose dark matter experiments to look for CWBs
- Why is this difficult?
	- Weakly Coupled

•
$$
\text{CaB: } \frac{1}{f_a}
$$
 • $\text{hCMB: } \epsilon$ • $\text{GWB: } \frac{1}{M_p}$

• Low Density

 $\rho_{\text{W}} \lesssim \rho_{\text{CMB}}$

Detection Suppression Factor: $\rho_{CMB}/\rho_{DM} \simeq 10^{-9}$

• Stochastic Signal

Coherence Time τ

$$
\tau_{\rm W} \ll \tau_{\rm DM}
$$

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi
$$

 \sim - 4 三 ト $2Q$

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \Rightarrow (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

 \sim - 4 三 ト $2Q$

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

 \sim - 4 三 ト $2Q$

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - g(\partial_{\mu}a)\gamma^{\mu}\gamma^{5} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{wind}
$$

$$
B_{wind} = 2\gamma^{-1}g\nabla a
$$

 $\mathbf{y} = \mathbf{y} \quad \mathbf{y} = \mathbf{y} \quad \mathbf{y} = \mathbf{y}$

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

$$
\begin{aligned}\n\bullet \mathcal{L} &\supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - g(\partial_{\mu}a)\gamma^{\mu}\gamma^{5} - m)\Psi \quad \Longrightarrow \quad H_{\text{int}} = -\vec{\mu} \cdot \vec{B}_{\text{wind}} \\
B_{\text{wind}} &= 2\gamma^{-1}g\nabla a \\
\bullet \mathcal{L} &\supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \epsilon F_{\mu\nu}X^{\mu\nu}\n\end{aligned}
$$

A → → ∃ → → ∃ →

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - g(\partial_{\mu}a)\gamma^{\mu}\gamma^{5} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{wind}
$$

$$
B_{wind} = 2\gamma^{-1}g\nabla a
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(\gamma^{\mu}(i\partial_{\mu} + qA_{\mu} + \epsilon qX_{\mu}) - m)\Psi \Longrightarrow H_{int} = -\epsilon \vec{\mu} \cdot \vec{B}_X
$$

向 ▶ (ヨ) (ヨ)

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - g(\partial_{\mu}a)\gamma^{\mu}\gamma^{5} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{wind}
$$

$$
B_{wind} = 2\gamma^{-1}g\nabla a
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(\gamma^{\mu}(i\partial_{\mu} + qA_{\mu} + \epsilon qX_{\mu}) - m)\Psi \Longrightarrow H_{int} = -\epsilon \vec{\mu} \cdot \vec{B}_X
$$

$$
\bullet \mathcal{L} \supset \sqrt{-g} \ \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + i\gamma^{\mu}\Gamma_{\mu} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{geo}
$$

向 ▶ (ヨ) (ヨ)

• Today we focus on Spin - Dirac Equation

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi \implies (i\gamma^{\mu}\partial_{\mu} + q\gamma^{\mu}A_{\mu} - m)\Psi = 0
$$

$$
\Downarrow
$$

$$
H_{int} = -\vec{\mu} \cdot \vec{B}
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} - g(\partial_{\mu}a)\gamma^{\mu}\gamma^{5} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{wind}
$$

$$
B_{wind} = 2\gamma^{-1}g\nabla a
$$

$$
\bullet \mathcal{L} \supset \bar{\Psi}(\gamma^{\mu}(i\partial_{\mu} + qA_{\mu} + \epsilon qX_{\mu}) - m)\Psi \Longrightarrow H_{int} = -\epsilon \vec{\mu} \cdot \vec{B}_X
$$

$$
\bullet \mathcal{L} \supset \sqrt{-g} \ \bar{\Psi}(i\gamma^{\mu}\partial_{\mu} + i\gamma^{\mu}\Gamma_{\mu} - m)\Psi \implies H_{int} = -\vec{\mu} \cdot \vec{B}_{geo}
$$

WISPs manifest as effective magnetic fields Can be probed via spin-based experiments

 299

そロトー

×.

伊 → → 手

∍ $\,$ э

 \rightarrow

Basics of NMR

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

Basics of NMR

すロト (御) すきとすきと

Þ

Basics of NMR

 \leftarrow

AD > < 3

One can start from Schrödinger equation for spins to find magnetization....or use the Bloch Equations:

$$
\frac{dM}{dt} = M \times \gamma B - \frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_z - M_0)\hat{z}}{T_1}
$$

One can start from Schrödinger equation for spins to find magnetization....or use the Bloch Equations:

$$
\frac{dM}{dt} = M \times \gamma B - \frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_z - M_0)\hat{z}}{T_1}
$$

 T_1 & T_2 are relaxation times, phenomenological

One can start from Schrödinger equation for spins to find magnetization....or use the Bloch Equations:

$$
\frac{dM}{dt} = M \times \gamma B - \frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_z - M_0)\hat{z}}{T_1}
$$

- T_1 & T_2 are relaxation times, phenomenological
- Magnetic field & magnetization composed of two pieces

$$
\vec{B} = B_0 \hat{z} + \vec{B}_w
$$

$$
\vec{M} = M_0 \hat{z} + \vec{M}_{\perp}
$$

• One can start from Schrödinger equation for spins to find magnetization....or use the Bloch Equations:

$$
\frac{dM}{dt} = M \times \gamma B - \frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_z - M_0)\hat{z}}{T_1}
$$

 \bullet T_1 & T_2 are relaxation times, phenomenological Magnetic field & magnetization composed of two pieces

$$
\vec{B} = B_0 \hat{z} + \vec{B}_w
$$

$$
\vec{M} = M_0 \hat{z} + \vec{M}_{\perp}
$$

• Perturbative expansion and decouple the equations

$$
\ddot{M}_x + \frac{2}{T_2} \dot{M}_x + \omega_0^2 M_x = \gamma \omega_0 M_0 (\hat{x} \cdot \vec{B}_w) - \gamma M_0 \frac{d}{dt} (\hat{y} \cdot \vec{B}_w)
$$

• One can start from Schrödinger equation for spins to find magnetization....or use the Bloch Equations:

$$
\frac{dM}{dt} = M \times \gamma B - \frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_z - M_0)\hat{z}}{T_1}
$$

 T_1 & T_2 are relaxation times, phenomenological Magnetic field & magnetization composed of two pieces

$$
\vec{B} = B_0 \hat{z} + 2\gamma^{-1} g_N \nabla a
$$

$$
\vec{M} = M_0 \hat{z} + \vec{M}_\perp
$$

• Perturbative expansion and decouple the equations

$$
\ddot{M}_x + \frac{2}{T_2} \dot{M}_x + \omega_0^2 M_x = 2g_N M_0 \omega_0 (\hat{x} \cdot \nabla a) - 2g_N M_0 \frac{d}{dt} (\hat{y} \cdot \nabla a)
$$

 Ω

$$
\ddot{M}_x + \frac{2}{T_2} \dot{M}_x + \omega_0^2 M_x = F(t)
$$

 \sim э

$$
\ddot{M}_x + \frac{2}{T_2} \dot{M}_x + \omega_0^2 M_x = F(t)
$$

Damped & Driven SHO – general solution via Green's function:

 $M_x(t) = C_1 e^{-t/T_2} \cos(\omega_0 t) + C_2 e^{-t/T_2} \sin(\omega_0 t) + \int_0^t$ 0 $G(t - s)F(s)$ ds

•
$$
G(t) = \frac{1}{\Omega} e^{-t/T_2} \sin[\Omega t]
$$
 $\bullet \Omega^2 = \omega_0^2 - T_2^{-2}$

$$
\ddot{M}_x + \frac{2}{T_2} \dot{M}_x + \omega_0^2 M_x = F(t)
$$

Damped & Driven SHO – general solution via Green's function:

 $M_x(t) = C_1 e^{-t/T_2} \cos(\omega_0 t) + C_2 e^{-t/T_2} \sin(\omega_0 t) + \int_0^t$ 0 $G(t - s)F(s)$ ds

•
$$
G(t) = \frac{1}{\Omega} e^{-t/T_2} \sin[\Omega t]
$$
 $\bullet \Omega^2 = \omega_0^2 - T_2^{-2}$

• From here can get the power spectral density (PSD) of signal

$$
P_k := \frac{\Delta t}{T} \langle \widetilde{M}_k^2 \rangle \qquad \qquad \widetilde{M}_k := \sum_{n=0}^{N-1} M(n\Delta t) e^{-2\pi i k n/N}
$$

NMR used in CASPEr searches for QCD axion dark matter

[Graham,Rajendran,'13] [Budker,Graham,Ledbetter, Rajendran,Sushkov,'13] [Jackson Kimball et al.,'17]

 200

メロメ オ母メ メミメ メミメ

- NMR used in CASPEr searches for QCD axion dark matter
- Challenges to experimental implementation:
	- Realize sufficiently long T_2
	- Maintain spatially homogeneous magnetic fields

[Graham,Rajendran,'13] [Budker,Graham,Ledbetter, Rajendran,Sushkov,'13] [Jackson Kimball et al.,'17]

 200

4日)

A L

SIL

- NMR used in CASPEr searches for QCD axion dark matter
- Challenges to experimental implementation:
	- Realize sufficiently long T_2
	- Maintain spatially homogeneous magnetic fields
- Determining limits requires several more steps:
	- Incorporate noise sources: Thermal, Spin Projection,..
	- Elucidate scan strategy
	- Model source accurately

.
[<mark>Graham,Rajendran,'13]</mark>
[Budker,Graham,Ledbetter, Raiendran, Sushkov, '13] [Jackson Kimball et al.,'17]

つへへ

- NMR used in CASPEr searches for QCD axion dark matter
- Challenges to experimental implementation:
	- Realize sufficiently long T_2
	- Maintain spatially homogeneous magnetic fields
- Determining limits requires several more steps:
	- Incorporate noise sources: Thermal, Spin Projection,..
	- Elucidate scan strategy
	- Model source accurately

.
[<mark>Graham,Rajendran,'13]</mark>
[Budker,Graham,Ledbetter, Raiendran, Sushkov, '13] [Jackson Kimball et al.,'17]

つへへ

- NMR used in CASPEr searches for QCD axion dark matter
- Challenges to experimental implementation:
	- Realize sufficiently long T_2
	- Maintain spatially homogeneous magnetic fields
- Determining limits requires several more steps:
	- Incorporate noise sources: Thermal, Spin Projection,..
	- Elucidate scan strategy
	- Model source accurately

$$
\nabla a(t) = \sqrt{\frac{2\rho_a}{N_a \bar{\omega}}} \sum_{i=1}^{N_a} \frac{\vec{k}_i}{\sqrt{\omega_i}} \sin[\omega_i t + \phi_i]
$$
\n• $\omega_i \approx m_a (1 + v_i^2/2)$ \n• $\vec{k}_i \approx m_a \vec{v}_i$ \n• $\phi_i \in [0, 2\pi)$

.
[<mark>Graham,Rajendran,'13]</mark>
[Budker,Graham,Ledbetter, Raiendran, Sushkov, '13] [Jackson Kimball et al.,'17]

つへへ

4 17 18

JML [From Spins to Strings](#page-0-0)

×. \sim \sim

Assume CaB couples to nucleons: $\mathcal{L} \supset g_N^{(a)}$ $\bar{\bar{N}}^{(a)}_{N}(\partial_{\mu}a)\bar{N}\gamma^{\mu}\gamma^{5}N$

- Assume CaB couples to nucleons: $\mathcal{L} \supset g_N^{(a)}$ $\bar{\bar{N}}^{(a)}_{N}(\partial_{\mu}a)\bar{N}\gamma^{\mu}\gamma^{5}N$
- Can leverage the hard work above to map QCD axion projections to CaB projections:

$$
\rho_{a} = \rho_{\rm DM} \sqrt{\frac{T_2}{\tau_a}} \left(\frac{g_N^{\rm (DM)}}{g_N^{\left(a\right)}} \right)^2 \left(\frac{v_{\rm DM}}{v_a} \right)^2
$$

つへへ

- Assume CaB couples to nucleons: $\mathcal{L} \supset g_N^{(a)}$ $\bar{\bar{N}}^{(a)}_{N}(\partial_{\mu}a)\bar{N}\gamma^{\mu}\gamma^{5}N$
- Can leverage the hard work above to map QCD axion projections to CaB projections:

$$
\rho_{a} = \rho_{\rm DM} \sqrt{\frac{T_2}{\tau_a}} \left(\frac{g_N^{\rm (DM)}}{g_N^{\left(a \right)}} \right)^2 \left(\frac{v_{\rm DM}}{v_a} \right)^2
$$

o Define

$$
\Omega_a := \frac{1}{\rho_c} \frac{d\rho_a}{d\ln \omega}
$$

つへへ

NMR Application: CaB

Assume CaB couples to photons: $\mathcal{L} \supset \frac{\mathcal{E}_{\mathcal{B}^2\gamma\gamma}}{4}$ $\frac{G^{2\gamma\gamma}}{4}F_{\mu\nu}\widetilde{F}^{\mu\nu}$

[Dror,Murayama,Rodd, '21]

JML [From Spins to Strings](#page-0-0)

NMR Application: CaB

Assume CaB couples to nucleons: $\mathcal{L} \supset g_N^{(a)}$ $\bar{N}^{(a)}(\partial_{\mu}a)\bar{N}\gamma^{\mu}\gamma^{5}N$

JML [From Spins to Strings](#page-0-0)

[24XX.XXXXX]

NMR Application: Dark Photons

JML [From Spins to Strings](#page-0-0)

NMR Application: Gravitational Waves

 \leftarrow

伊 → → 手

 \rightarrow ∍ Þ. 299

∍

NMR Application: Gravitational Waves

UDER CONSTRUCT

K ロト K 御 ト K 君 ト K 君 ト

重

- WISPs and Cosmic WISP Backgrounds are common features in string compactifications. They represent a fantastic opportunity to tie string theory to experiments
- Nuclear Magnetic Resonance can probe CWBs while they act as pseudo-magnetic fields on spin samples

つへへ

- WISPs and Cosmic WISP Backgrounds are common features in string compactifications. They represent a fantastic opportunity to tie string theory to experiments
- Nuclear Magnetic Resonance can probe CWBs while they act as pseudo-magnetic fields on spin samples

$From$ Nuclear to $\frac{CaBs}{CMBs}$ Resonance CaBs hCMBs GWBs

- WISPs and Cosmic WISP Backgrounds are common features in string compactifications. They represent a fantastic opportunity to tie string theory to experiments
- Nuclear Magnetic Resonance can probe CWBs while they act as pseudo-magnetic fields on spin samples

From Spin to Strings

 Ω