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Introduction

This talk: detecting Cosmic WISP Backgrounds (CWBs)

WISPy States:
Axions
Dark Photons
Gravitons

[Talks by: Andreas,Federico,Joao,Nicole,Margherita,Gonzalo]
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Introduction

This talk: detecting Cosmic WISP Backgrounds (CWBs)
WISPy States:

Axions
Dark Photons
Gravitons

As Cosmic Backgrounds:
Cosmic axion Background (CaB) - relic density of relativistic
ultralight axions
hidden CMB (hCMB) - population of ultralight dark photons
Gravitational Wave Background (GWB)

This, but dark ‚
‚
‚

[Cicoli,Sinha,Deal;’22]
[Cicoli,Hebecker,Jaeckel,Wittner;’22]
[Cicoli,Piovano;’18]
[Conlon,Marsh;’13]
[Cicoli,Conlon,Quevedo;’12]
[Cicoli,Goodsell,Ringwald;’12]
[Cicoli,Goodsell,Jaeckel,Ringwald;’11]

[Talks by: Andreas,Federico,Joao,Nicole,Margherita,Gonzalo]
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Introduction

Why are these interesting?

WISP states are common predictions of string models:
[Svrcek,Witten;’06]
[Arvanitaki,Dimopoulos,Dubovsky,
Kaloper,March-Russel;’09]

[Cicoli,Goodsell,Ringwald;’12]
[Cicoli,Guidetti,Righi,Westphal;’21]

a “

ż

Σp

Cp

ñ∇χ “ Bµχ ´ qAµ

UpNq Ą Up1q

X

g

g

` X

g

g
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Introduction

Why are these interesting?
WISP states are common predictions of string models
Numerous possibilities for production:

Thermal
Perturbative Decay

Parametric Resonance
Topological Defects

Each production mechanism gives a different CWB momentum
distribution - resolution gives insight into early universe physics

Detection can support ideas in string cosmology (i.e. an Axiverse)
& probe cosmological history

How can we detect them?
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Introduction

Purely Gravitationally: ∆Neff

[Green et al;’19]

This would indicate existence
How can we get some more fine-grained information?
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Introduction

Assume coupling to Standard Model - try direct detection
Repurpose dark matter experiments to look for CWBs

Why is this difficult?
Weakly Coupled

‚ CaB:
1
fa

‚ hCMB: ϵ ‚ GWB:
1
Mp

Low Density
ρW À ρCMB

Detection Suppression Factor: ρCMB{ρDM » 10´9

Stochastic Signal

Coherence Time τ : If T< τ
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Assume coupling to Standard Model - try direct detection
Repurpose dark matter experiments to look for CWBs
Why is this difficult?

Weakly Coupled

‚ CaB:
1
fa

‚ hCMB: ϵ ‚ GWB:
1
Mp

Low Density
ρW À ρCMB

Detection Suppression Factor: ρCMB{ρDM » 10´9

Stochastic Signal

Coherence Time τ :

τW ! τDM
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WISPy Couplings to Standard Model

Today we focus on Spin - Dirac Equation

‚L Ą Ψ̄piγµBµ ` qγµAµ ´ mqΨ

ñ piγµBµ ` qγµAµ ´ mqΨ = 0
ó

Hint “ ´µ⃗ ¨ B⃗

‚L Ą Ψ̄piγµBµ ´ gpBµaqγµγ5 ´ mqΨ ñ Hint “ ´µ⃗ ¨ B⃗wind

Bwind “ 2γ´1g∇a

‚L Ą Ψ̄piγµBµ ` qγµAµ ´ mqΨ ´
1
4
FµνF

µν ´
1
4
XµνX

µν ` ϵFµνX
µν
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Basics of NMR

‚Larmor Frequency: ω0 “ γB0B0

xSy
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Basics of NMR

B0

M0
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Basics of NMR

B0

Bwptq

M0 ` MKptq

‚ On Resonance: ω0 » ωw

MKptq „ t cospωwtq
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Nuclear Magnetic Resonance: Basics

One can start from Schrödinger equation for spins to find
magnetization....or use the Bloch Equations:

dM
dt

“ M ˆ γB ´
Mx x̂ ` My ŷ

T2
´

pMz ´ M0qẑ
T1

T1 & T2 are relaxation times, phenomenological
Magnetic field & magnetization composed of two pieces

B⃗ “ B0ẑ ` B⃗w

M⃗ “ M0ẑ ` M⃗K

Perturbative expansion and decouple the equations

:Mx `
2
T2

9Mx ` ω2
0Mx “ γω0M0px̂ ¨ B⃗w q ´ γM0

d

dt
pŷ ¨ B⃗w q
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B⃗ “ B0ẑ ` B⃗w

M⃗ “ M0ẑ ` M⃗K
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Nuclear Magnetic Resonance: Basics

One can start from Schrödinger equation for spins to find
magnetization....or use the Bloch Equations:

dM
dt

“ M ˆ γB ´
Mx x̂ ` My ŷ

T2
´

pMz ´ M0qẑ
T1

T1 & T2 are relaxation times, phenomenological
Magnetic field & magnetization composed of two pieces

B⃗ “ B0ẑ ` 2γ´1gN∇a

M⃗ “ M0ẑ ` M⃗K

Perturbative expansion and decouple the equations

:Mx `
2
T2

9Mx ` ω2
0Mx “ 2gNM0ω0px̂ ¨ ∇aq ´ 2gNM0

d

dt
pŷ ¨ ∇aq
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Nuclear Magnetic Resonance: Basics

:Mx `
2
T2

9Mx ` ω2
0Mx “ F ptq

Damped & Driven SHO – general solution via Green’s function:

‚ G ptq “
1
Ω
e´t{T2 sinrΩts ‚ Ω2 “ ω2

0 ´ T´2
2

Mxptq “ C1e
´t{T2 cospω0tq ` C2e

´t{T2 sinpω0tq `

ż t

0
G pt ´ sqF psqds

From here can get the power spectral density (PSD) of signal

Pk :“
∆t

T
x rM2

k y rMk :“
N´1
ÿ

n“0

Mpn∆tqe´2πikn{N
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NMR Application: QCD Axion Dark Matter

[Graham,Rajendran,’13]
[Budker,Graham,Ledbetter,
Rajendran,Sushkov,’13]

[Jackson Kimball et al.,’17]

NMR used in CASPEr searches for QCD axion dark matter

Challenges to experimental implementation:
Realize sufficiently long T2
Maintain spatially homogeneous magnetic fields

Determining limits requires several more steps:
Incorporate noise sources: Thermal, Spin Projection,..
Elucidate scan strategy
Model source accurately
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Challenges to experimental implementation:

Realize sufficiently long T2
Maintain spatially homogeneous magnetic fields

Determining limits requires several more steps:
Incorporate noise sources: Thermal, Spin Projection,..
Elucidate scan strategy
Model source accurately
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NMR Application: QCD Axion Dark Matter
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NMR Application: QCD Axion Dark Matter
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NMR Application: CaB

Assume CaB couples to nucleons: L Ą g
paq

N pBµaqN̄γµγ5N

Can leverage the hard work above to map QCD axion
projections to CaB projections:

ρa “ ρDM

c

T2

τa

˜

g
pDMq

N

g
paq

N

¸2
ˆ

vDM

va

˙2

Define

Ωa :“
1
ρc

dρa
d lnω
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NMR Application: CaB

Assume CaB couples to photons: L Ą
ggaγγ

4
Fµν rFµν

[Dror,Murayama,Rodd, ’21]
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NMR Application: CaB

Assume CaB couples to nucleons: L Ą g
paq

N pBµaqN̄γµγ5N
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NMR Application: Dark Photons
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NMR Application: Gravitational Waves
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NMR Application: Gravitational Waves
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Conclusions

WISPs and Cosmic WISP Backgrounds are common features
in string compactifications. They represent a fantastic
opportunity to tie string theory to experiments
Nuclear Magnetic Resonance can probe CWBs while they act
as pseudo-magnetic fields on spin samples
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