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Introduction

@ This talk: detecting Cosmic WISP Backgrounds (CWBs)
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o WISPy States:
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o Dark Photons
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Introduction

@ This talk: detecting Cosmic WISP Backgrounds (CWBs)

o WISPy States:

o Axions
o Dark Photons
o Gravitons

@ As Cosmic Backgrounds:

[Talks by: Andreas,Federico,Joao,Nicole,Margherita,Gonzalo]

o Cosmic axion Background (CaB) - relic density of relativistic

ultralight axions

o hidden CMB (hCMB) - population of ultralight dark photons
o Gravitational Wave Background (GWB)
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Introduction

@ Why are these interesting?

Svrcek, Witten;'06]

o WISP states are common predictions of string models: “ine i Boser: 05>
Cicoli,Goodsell,Ringwald;'12]
Cicoli,Guidetti,Righi, Westphal;'21]
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@ Numerous possibilities for production:
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Introduction

@ Why are these interesting?

@ WISP states are common predictions of string models

@ Numerous possibilities for production:

e Thermal
o Perturbative Decay

/

o Parametric Resonance
e Topological Defects

@ Each production mechanism gives a different CWB momentum
distribution - resolution gives insight into early universe physics
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@ Why are these interesting?

@ WISP states are common predictions of string models

@ Numerous possibilities for production:
e Thermal o Parametric Resonance
o Perturbative Decay e Topological Defects

@ Each production mechanism gives a different CWB momentum
distribution - resolution gives insight into early universe physics

Detection can support ideas in string cosmology (i.e. an Axiverse)
& probe cosmological history
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Introduction

@ Why are these interesting?

@ WISP states are common predictions of string models

@ Numerous possibilities for production:
e Thermal o Parametric Resonance
o Perturbative Decay e Topological Defects

@ Each production mechanism gives a different CWB momentum
distribution - resolution gives insight into early universe physics

Detection can support ideas in string cosmology (i.e. an Axiverse)
& probe cosmological history

How can we detect them?
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Introduction

@ Purely Gravitationally: ANgg
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Introduction

@ Purely Gravitationally: ANgg
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@ This would indicate existence

@ How can we get some more fine-grained information?
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Introduction

@ Assume coupling to Standard Model - try direct detection

@ Repurpose dark matter experiments to look for CWBs
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@ Assume coupling to Standard Model - try direct detection
@ Repurpose dark matter experiments to look for CWBs
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@ Assume coupling to Standard Model - try direct detection
@ Repurpose dark matter experiments to look for CWBs
o Why is this difficult?
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o Low Density
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Introduction

@ Assume coupling to Standard Model - try direct detection

@ Repurpose dark matter experiments to look for CWBs
o Why is this difficult?
o Weakly Coupled
1 1
e CaB: - e hCMB: ¢ e GWB: "

a P
o Low Density

PW < PCMB
Detection Suppression Factor: pcvg/ppm =~ 107°
e Stochastic Signal

Coherence Time 7: If 7 < T /\N\[V\/\/W\[\/
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Introduction

@ Assume coupling to Standard Model - try direct detection

@ Repurpose dark matter experiments to look for CWBs
o Why is this difficult?
o Weakly Coupled

e CaB: l e hCMB: ¢ e GWB: i
fa My,
o Low Density

PW < PCMB
Detection Suppression Factor: pcvg/ppm =~ 107°
e Stochastic Signal

Coherence Time 7:

W < TDM
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WISPy Couplings to Standard Model

@ Today we focus on Spin - Dirac Equation

oL D W(iy"d, + gy*A, — m)V
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WISPy Couplings to Standard Model

@ Today we focus on Spin - Dirac Equation
oL DV (in"dy, + gy A, — m)V = (iv"0, + gy" A, — mV =0
U

Hint = _,L_’:' é
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Bwind = 2’7_1gva

_ 1 1
oL 2 W(ir 0 + g1 Ay — m)W — L Fu F1 — 2 X X1 4 ey X1

JML From Spins to Strings
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@ Today we focus on Spin - Dirac Equation
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@ Today we focus on Spin - Dirac Equation
oL DV (in"dy, + gy A, — m)V = (iv"0, + gy' Ay — m)V =0
U
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WISPy Couplings to Standard Model

@ Today we focus on Spin - Dirac Equation

oL DV (in"dy, + gy A, — m)V = (iv"0, + gy' Ay — m)V =0
U

Hint = _,L_’:' é

oL > U(in"d, — g(0u2)7"y° — mW = Hine = —fi - Buing
Bwind = 2’7_1gva
oL S W(yH(idy + qAL + €gX,) — MW => Hip = —eji - By

—

oL 5 \/—g W(inhd, + if"T, —mV = Hipy = —fi - Bgeo
WISPs manifest as effective magnetic fields
Can be probed via spin-based experiments
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Basics of NMR

eLarmor Frequency: wp = vBo
Bo
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Nuclear Magnetic Resonance: Basics

@ One can start from Schrodinger equation for spins to find
magnetization....or use the Bloch Equations:
dM M+ M,y (M, — Mp)z

2 _MxAB-—
dt * Ts T1
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Nuclear Magnetic Resonance: Basics

@ One can start from Schrodinger equation for spins to find
magnetization....or use the Bloch Equations:
dM M+ M,y (M, — Mp)z

2 _MxAB-—
dt * Ts T1

o T1 & T, are relaxation times, phenomenological
o Magpnetic field & magnetization composed of two pieces
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Nuclear Magnetic Resonance: Basics

@ One can start from Schrodinger equation for spins to find
magnetization....or use the Bloch Equations:
dM M+ M,y (M, — Mp)z

2 _MxAB-—
dt * Ts T1

o T1 & T, are relaxation times, phenomenological
o Magpnetic field & magnetization composed of two pieces

§=Bof+§w
MZMof—FMl

@ Perturbative expansion and decouple the equations

. 2 . ~ — d A =
M, + ﬁMx + W(Z)Mx = 'YWOMO(X : BW) - VMoa(y : BW)
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Nuclear Magnetic Resonance: Basics

@ One can start from Schrodinger equation for spins to find
magnetization....or use the Bloch Equations:
dM M+ M,y (M, — Mp)z

2 _MxAB-—
dt * Ts T1

o T1 & T, are relaxation times, phenomenological
o Magpnetic field & magnetization composed of two pieces

= By2 + 2y 1gyVa
Moz + /\;I’L

B
M

@ Perturbative expansion and decouple the equations

. 2 . d
My + =My + wy My = 2gyMowo (% - Va) — 2gnMo- (7 - Va)
2
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Nuclear Magnetic Resonance: Basics

. 2 .
My + =My + wiM, = F(t)
T2

JML From Spins to Strings



Nuclear Magnetic Resonance: Basics

. 2 .
My + =My + wiM, = F(t)
T2

@ Damped & Driven SHO — general solution via Green's function:
t

M, (t) = Cre™ /T2 cos(wot) + Coe™t T2 sin(wot) + J G(t —s)F(s)ds
0

o G(t) = ée*t/Tz sin[Qt] e 02 =i~ T,2
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Nuclear Magnetic Resonance: Basics

. 2 .
My + =My + wiM, = F(t)
T2

@ Damped & Driven SHO — general solution via Green's function:
t

M, (t) = Cre™ /T2 cos(wot) + Coe™t T2 sin(wot) + J G(t —s)F(s)ds
0

o G(t) = ée*t/Tz sin[Qt] e 02 =i~ T,2

@ From here can get the power spectral density (PSD) of signal

At~ N N—1 .
Pi 1= — (M) My := ' M(nAt)e=2mkn/N
n=0
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NMR Application: QCD Axion Dark Matter

@ NMR used in CASPEr searches for QCD axion dark matter

Graham,Rajendran,'13]
Budker,Graham, Ledbetter,
Rajendran,Sushkov,'13]

[Jackson Kimball et al.,"17]
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NMR Application: QCD Axion Dark Matter

@ NMR used in CASPEr searches for QCD axion dark matter
. . . Graham Ra endran,'13]
o Challenges to experimental implementation: [%“adgggg;asightgjbgtef
. - [Jackson Kimball et al., 17]
o Realize sufficiently long T,

e Maintain spatially homogeneous magnetic fields
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NMR Application: QCD Axion Dark Matter

@ NMR used in CASPEr searches for QCD axion dark matter
@ Challenges to experimental implementation:

o Realize sufficiently long T,
e Maintain spatially homogeneous magnetic fields

Graham, Ra endran,'13]
Budker, Gra am, Ledbetter,
Rajendran, Sushkov, 13

[Jackson Kimball et al., 17]

@ Determining limits requires several more steps:

e Incorporate noise sources: Thermal, Spin Projection,..
o Elucidate scan strategy
o Model source accurately
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NMR Application: QCD Axion Dark Matter

@ NMR used in CASPEr searches for QCD axion dark matter
@ Challenges to experimental implementation:

o Realize sufficiently long T,
e Maintain spatially homogeneous magnetic fields

Graham, Ra endran,'13]
Budker, Gra am, Ledbetter,
Rajendran, Sushkov, 13

[Jackson Kimball et al., 17]

@ Determining limits requires several more steps:

e Incorporate noise sources: Thermal, Spin Projection,..
o Elucidate scan strategy
o Model source accurately

[2p, & Kk, ] o w;i ~ my(l+v?/2)
aw W/ o ki ~ myv:

e ¢; € [0,27)
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NMR Application: QCD Axion Dark Matter

Frequency [Hz]
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NMR Application: QCD Axion Dark Matter

Frequency [Hz]
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NMR Application: CaB

@ Assume CaB couples to nucleons: £ o g,(va)(&”a)l\_lfy“75N
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NMR Application: CaB

@ Assume CaB couples to nucleons: £ o g,(va)(&”a)l\_lfy“75N

@ Can leverage the hard work above to map QCD axion
projections to CaB projections:

2
T g,(VDM) vom \ 2
pa = pDM — (a)
Ta Va

N
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NMR Application: CaB

@ Assume CaB couples to nucleons: £ o g,(va)(&”a)l\_lfy“75N

@ Can leverage the hard work above to map QCD axion
projections to CaB projections:

2
T g,(VDM) vom \ 2
pa = pDM — (a)
Ta Va

N

@ Define

1L dp
N pcdinw

a -
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NMR Application: CaB

8ga ~
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NMR Application: CaB

@ Assume CaB couples to nucleons: £ o g,(\,”(aua)/\'/fwf/v AKX X000
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NMR Application: Dark Photons

1077

T, =100 s, V = (10 ecm)3, Asqump = 0.3 cm?
3He: Bo=20T, |y| ~ 203 MHz/T
120Xe: By = 10 T, |y| ~ 75 MHz/T
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NMR Application: Gravitational Waves
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NMR Application: Gravitational Waves




Conclusions

@ WISPs and Cosmic WISP Backgrounds are common features
in string compactifications. They represent a fantastic
opportunity to tie string theory to experiments

@ Nuclear Magnetic Resonance can probe CWBs while they act
as pseudo-magnetic fields on spin samples
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Conclusions

@ WISPs and Cosmic WISP Backgrounds are common features
in string compactifications. They represent a fantastic
opportunity to tie string theory to experiments

@ Nuclear Magnetic Resonance can probe CWBs while they act
as pseudo-magnetic fields on spin samples
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in string compactifications. They represent a fantastic
opportunity to tie string theory to experiments

@ Nuclear Magnetic Resonance can probe CWBs while they act
as pseudo-magnetic fields on spin samples
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