#### WISPs in String Cosmology 2024 Department of Physics and Astronomy "Augusto Righi Bologna, Italy

to the eniging of EANTIBRANE



Mario Ramos-Hamud University of Cambridge

Thursday, 23th October 2024

Sadi BRAN



Based on arXiv: 2410.00097





### Collaboration



M. Cicoli



C. Hughes



A. Rakin



F. Marino



F. Quevedo



G. Villa





### OUTLINE

- Motivation
- Late-time modulus stabilisation
- Inflation from string theory
- Summary
- Future work















Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation.





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.







Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.







Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.



#### KKLMMT:

- 1. Inflation potential must consider the inflaton and the volume modulus  $\mathcal{V}$ .
- 2. Once  $\mathscr{V}$  is considered, generic  $\eta$  problem when stabilising with non-perturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.



KKLMMT: [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

- 1. Inflation potential must consider the inflaton and the volume modulus  $\mathscr{V}$ .
- 2. Once  $\mathscr{V}$  is considered, generic  $\eta$  problem when stabilising with non-perturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).





Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$V(\phi) = A - \frac{B}{\phi^n} + \cdots$$
 or  $V(\phi) = C - De^{-a\phi} + \cdots$ 

UV completion? Several proposals from string theory for the *exponential potential* such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008]

For the *inverse power potential*: brane-antibrane potential is a first example, however without modulus stabilisation.



KKLMMT: [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

- 1. Inflation potential must consider the inflaton and the volume modulus  $\mathscr{V}$ .
- 2. Once  $\mathscr{V}$  is considered, generic  $\eta$  problem when stabilising with non-perturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).

We provide concrete examples within string theory with **modulus stabilisation** and inverse power law **inflation** potential in the presence of the volume modulus.





### LATE TIME MODULUS STABILISATION





#### **Perturbative corrections**





### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.





### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .





### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3\ln(\tau) \rightarrow K = -3\ln(\tau - \alpha \ln \tau)$ .

[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021]





### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3\ln(\tau) \rightarrow K = -3\ln(\tau - \alpha \ln \tau)$ .

[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .  $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .  $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.  $\mathcal{O}(\alpha'^2)$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .  $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: <sup>[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021]</sup>

[M. Weissenbacher, 2020]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: <sup>[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021]</sup> [M. Weissenbacher, 2020]

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: <sup>[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021]</sup> [M. Weissenbacher, 2020]

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: <sup>[D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021]</sup> [M. Weissenbacher, 2020]

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\}$$

with  $T_7 = 2\pi$  the D7-brane tension and





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\}$$

with  $T_7 = 2\pi$  the D7-brane tension and





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N}=2)$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2)$  [K. Becker, M. Becker, M. Haack, and J. Louis, 2002]

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix} \quad (\mathcal{N} = 2)$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$




#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix} (\mathcal{N} = 2) \begin{bmatrix} \text{I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997]} \\ \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

 $(\mathcal{N} = 2)$  [I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997] [G. K. Leontaris and P. Shukla, 2022]

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

 $(\mathcal{N} = 2)$  [I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997] [G. K. Leontaris and P. Shukla, 2022]

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

 $(\mathcal{N} = 2)$  [I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997] (High [G. K. Leontaris and P. Shukla, 2022] Curvature)

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha'^3)$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n\alpha^3)} = -2\ln\left\{1 + \frac{\xi}{2(g_s\tau)^{3/2}}\left[1 + g_s^2\left(c_2\left(1 - \frac{3T_7}{2}\ln\tau\right) + c_3\right)\right]\right\},\$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{O7}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$ 





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n\alpha'^3)} = -2\ln\left\{1 + \frac{\xi}{2(g_s\tau)^{3/2}}\left[1 + g_s^2\left(c_2\left(1 - \frac{3T_7}{2}\ln\tau\right) + c_3\right)\right]\right\},\$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

- [D. Ciupke, J. Louis, and A. Westphal, 2015]
- Non-Kähler corrections:  $(\mathcal{N} = 2)$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{O7}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n\alpha'^3)} = -2\ln\left\{1 + \frac{\xi}{2(g_s\tau)^{3/2}}\left[1 + g_s^2\left(c_2\left(1 - \frac{3T_7}{2}\ln\tau\right) + c_3\right)\right]\right\},\$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{O7}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(\text{CY}) + 2 \int_{\text{CY}} \text{D}_{\text{O7}}^3 \right) \quad \text{and} \quad c_2 = \frac{2\zeta(2)}{\zeta(3)}$$

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read

$$K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2} \,,$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2)$  [K. Becker, M. Becker, M. Haack, and J. Louis, 2002] [F. Bonetti and M. Weissenbacher, 2017]

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha^{\prime 4})$ : relevant corrections arise at  $\mathcal{N} = 2$  and  $\mathcal{O}(g_S^2)$  and read

[M. Berg, M. Haack, and B. Kors, 2005]

$$K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2} \,,$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read

[M. Berg, M. Haack, and B. Kors, 2005] [M. Berg, M. Haack, and E. Pajer, 2007]

$$K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2},$$





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2)$  [K. Becker, M. Becker, M. Haack, and J. Louis, 2002] [F. Bonetti and M. Weissenbacher, 2017]

with  $T_7 = 2\pi$  the D7-brane tension and

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read

[M. Berg, M. Haack, and B. Kors, 2005]

[X. Gao, A. Hebecker, S. Schreyer, and G. Venken, 20022]



 $K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2},$ 



#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

 $\begin{array}{ll} (\mathcal{N}=2) & [\text{I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997}] \\ & (\text{High} & [\text{G. K. Leontaris and P. Shukla, 2022}] \\ & (\text{Urvature}) & [\text{I. Antoniadis, Y. Chen, and G. K. Leontaris, 2018 & 2020}] \\ & (\mathcal{N}=1) & [\text{M. Berg, M. Haack and S. Sjörs, 2014}] \end{array}$ 

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha'^4)$  : relevant corrections arise at  $\mathcal{N}=2$  and  $\mathcal{O}(g_S^2)$  and read

$$K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2},$$

[M. Berg, M. Haack, and B. Kors, 2005][M. Berg, M. Haack, and E. Pajer, 2007][X. Gao, A. Hebecker, S. Schreyer, and G. Venken, 20022][G. von Gersdorff and A. Hebecker, 2005]





#### **Perturbative corrections**

 $\mathcal{O}(\alpha')$ : no correction is known to arise at this order.

 $\mathcal{O}(\alpha^{\prime 2})$ : 1-loop logarithmic four-cycle redefinitions:  $K = 3 \ln(\tau) \rightarrow K = -3 \ln(\tau - \alpha \ln \tau)$ .

 $\mathcal{O}(\alpha^{'3})$ : several corrections at this order, but the relevant are: [D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, 2021] [M. Weissenbacher, 2020]

• Kähler corrections:

$$K_{\mathcal{O}(g_s^n \alpha'^3)} = -2 \ln \left\{ 1 + \frac{\xi}{2(g_s \tau)^{3/2}} \left[ 1 + g_s^2 \left( c_2 \left( 1 - \frac{3T_7}{2} \ln \tau \right) + c_3 \right) \right] \right\},$$

 $(\mathcal{N} = 2) \quad \begin{bmatrix} \text{K. Becker, M. Becker, M. Haack, and J. Louis, 2002} \\ \\ \text{[F. Bonetti and M. Weissenbacher, 2017]} \end{bmatrix}$ 

with  $T_7 = 2\pi$  the D7-brane tension and

 $\begin{array}{ll} (\mathcal{N}=2) & [\text{I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997}] \\ & (\text{High} & [\text{G. K. Leontaris and P. Shukla, 2022}] \\ & (\text{Urvature}) & [\text{I. Antoniadis, Y. Chen, and G. K. Leontaris, 2018 & 2020}] \\ & (\mathcal{N}=1) & [\text{M. Berg, M. Haack and S. Sjörs, 2014}] \end{array}$ 

$$\xi = -\frac{\zeta(3)}{2(2\pi)^3} \left( \chi(CY) + 2 \int_{CY} D_{07}^3 \right)$$
 and  $c_2 = \frac{2\zeta(2)}{\zeta(3)}$ 

where  $\chi(CY)$  is the Calabi-Yau Euler number and  $D_{O7}$  the (1,1)-form dual to the divisor wrapped by the O7-plane.

• Non-Kähler corrections:  $(\mathcal{N} = 2)$  [D. Ciupke, J. Louis, and A. Westphal, 2015] [T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

$$V_{F^4} = c_3 \sqrt{g_s} \frac{W_0^4}{\tau^{11/2}},$$

where  $c_3$  is a small topological quantity that has been estimated to be of order  $10^{-3} - 10^{-4}$ .

 $\mathcal{O}(\alpha^{\prime 4})$ : relevant corrections arise at  $\mathcal{N} = 2$  and  $\mathcal{O}(g_S^2)$  and read

[M. Berg, M. Haack, and B. Kors, 2005]

[M. Berg, M. Haack, and E. Pajer, 2007]



where  $c_4$  is a function of the complex structure moduli.



 $K_{\mathcal{O}(g_s^2 \alpha'^4)} \simeq \frac{c_4}{\tau^2},$ 











$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$





$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .





$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by




The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathcal{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c \, e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha \, e^{\frac{c}{2g_s^2}},$$





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathcal{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c \, e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha \, e^{\frac{c}{2g_s^2}},$$

where  $\mathcal{W}_k(x)$  with k = 0, -1 are the 0- and (-1)-branches of the Lambert function  $\mathcal{W}_k(x)$  defined as  $\mathcal{W}_k(x)e^{\mathcal{W}_k(x)} = x$ , and  $\alpha \simeq (\xi/c)\sqrt{g_s/\tau_{\min}}$ .





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathcal{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c \, e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha \, e^{\frac{c}{2g_s^2}},$$

where  $\mathcal{W}_k(x)$  with k = 0, -1 are the 0- and (-1)-branches of the Lambert function  $\mathcal{W}_k(x)$  defined as  $\mathcal{W}_k(x)e^{\mathcal{W}_k(x)} = x$ , and  $\alpha \simeq (\xi/c)\sqrt{g_s/\tau_{\min}}$ .

To obtain **de Sitter**:





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathcal{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha e^{\frac{c}{2g_s^2}},$$

where  $\mathcal{W}_k(x)$  with k = 0, -1 are the 0- and (-1)-branches of the Lambert function  $\mathcal{W}_k(x)$  defined as  $\mathcal{W}_k(x)e^{\mathcal{W}_k(x)} = x$ , and  $\alpha \simeq (\xi/c)\sqrt{g_s/\tau_{\min}}$ .

To obtain **de Sitter**:

$$\theta_* \simeq 0.993 < \theta < 1 \,.$$





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathcal{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha e^{\frac{c}{2g_s^2}},$$

where  $\mathcal{W}_k(x)$  with k = 0, -1 are the 0- and (-1)-branches of the Lambert function  $\mathcal{W}_k(x)$  defined as  $\mathcal{W}_k(x)e^{\mathcal{W}_k(x)} = x$ , and  $\alpha \simeq (\xi/c)\sqrt{g_s/\tau_{\min}}$ .

To obtain **de Sitter**:

$$\theta_* \simeq 0.993 < \theta < 1 \,.$$





The leading order contributions of the corrections can be captured by

$$K \simeq -3 \ln \left[ \tau - \alpha \ln \tau + \frac{\xi}{3cg_s^{3/2}\sqrt{\tau}} \left( c - g_s^2 \ln \tau \right) \right],$$
  
where  $c \equiv \frac{\zeta(3)}{3\zeta(2)T_7} = \frac{\zeta(3)}{\pi^3} \simeq 0.04$ .

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which induce a constant superpotential  $W_0$ .

No-scale property is broken by perturbative corrections which at leading order result in the scalar potential

$$\frac{V}{3W_0^2} = e^K \left(\frac{1}{3} K^{T\overline{T}} K_T K_{\overline{T}} - 1\right) \simeq \frac{\alpha}{\tau^4} - \frac{\xi \sqrt{g_s}}{4c\tau^{9/2}} \left(\ln \tau - \frac{c}{g_s^2}\right)$$

•  $\alpha = 0$  and  $\xi > 0$ : potential admits and AdS<sup>†</sup> at  $\tau \sim e^{c_l g_s^2} \gg 1$  for  $g_S \ll 1$ .

•  $\alpha > 0$  and small: uplifting to Minkowski or dS. The minimum and maximum given by

$$\tau_{\min} = \lambda_0 e^{\frac{c}{g_s^2}} \quad \tau_{\max} = \lambda_{-1} e^{\frac{c}{g_s^2}} \quad \text{with} \quad \lambda_k \equiv e^{\frac{2}{9}} e^{-2\mathscr{W}_k(-\theta/e)} \quad \text{and} \quad \theta \equiv \left(\frac{16c \, e^{\frac{10}{9}}}{9\xi\sqrt{g_s}}\right) \alpha \, e^{\frac{c}{2g_s^2}},$$

where  $\mathcal{W}_k(x)$  with k = 0, -1 are the 0- and (-1)-branches of the Lambert function  $\mathcal{W}_k(x)$  defined as  $\mathcal{W}_k(x)e^{\mathcal{W}_k(x)} = x$ , and  $\alpha \simeq (\xi/c)\sqrt{g_s/\tau_{\min}}$ .

To obtain **de Sitter**:

$$\theta_* \simeq 0.993 < \theta < 1 \, .$$

<sup>†</sup>: The uplifting could come from several different sources like, for example, a D3-brane in a different throat from the inflationary one or dilaton-dependent non-perturbative effects at singularities.









Given that most of the known Calabi-Yau threefolds with  $\xi>0$  have  $\xi\in(0.1,1.5),$  we fix  $c=\zeta(3)/\pi^3$  obtaining

$$\theta \simeq 1 \qquad \Leftrightarrow \qquad \alpha \simeq 4.78 \sqrt{g_s} \, e^{-\frac{0.02}{g_s^2}} \simeq 0.22 \qquad {\rm for} \qquad g_s \simeq 0.1 \,,$$





Given that most of the known Calabi-Yau threefolds with  $\xi > 0$  have  $\xi \in (0.1,1.5)$ , we fix  $c = \zeta(3)/\pi^3$  obtaining [M. Kreuzer and H. Sharke , 2000]

$$\theta \simeq 1 \qquad \Leftrightarrow \qquad \alpha \simeq 4.78 \sqrt{g_s} \, e^{-\frac{0.02}{g_s^2}} \simeq 0.22 \qquad \text{for} \qquad g_s \simeq 0.1 \,,$$





Given that most of the known Calabi-Yau threefolds with  $\xi > 0$  have  $\xi \in (0.1,1.5)$ , we fix  $c = \zeta(3)/\pi^3$  obtaining [M. Kreuzer and H. Sharke , 2000]

$$\theta \simeq 1 \qquad \Leftrightarrow \qquad \alpha \simeq 4.78 \sqrt{g_s} \, e^{-\frac{0.02}{g_s^2}} \simeq 0.22 \qquad \text{for} \qquad g_s \simeq 0.1 \,,$$







Given that most of the known Calabi-Yau threefolds with  $\xi > 0$  have  $\xi \in (0.1,1.5)$ , we fix  $c = \zeta(3)/\pi^3$  obtaining [M. Kreuzer and H. Sharke , 2000]

$$\theta \simeq 1 \qquad \Leftrightarrow \qquad \alpha \simeq 4.78 \sqrt{g_s} \, e^{-\frac{0.02}{g_s^2}} \simeq 0.22 \qquad \text{for} \qquad g_s \simeq 0.1 \,,$$



Figure: We set  $\xi = g_s = 0.1$  and  $T_7 = 2\pi$ . By increasing  $\theta$  we move from AdS to dS and finally to a runaway. In particular, the red curve shows a dS minimum at  $\tau_{\min} \sim 370$  and  $V_{\min} \ll 10^{-14}$  for an appropriate choice of  $\theta$ .





# INFLATION FROM STRING THEORY









Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right)$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

The corresponding inter-brane potential is given by

V

$$=2T_{3}e^{-4\rho(0)}\mathcal{V}^{2/3}\left(1-\frac{T_{3}e^{-4\rho(0)}\mathcal{V}^{2/3}}{r^{4}}\right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right).$$





Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

The corresponding inter-brane potential is given by

$$\mathcal{V} = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right)$$

Nilpotent superfield framework:





*D*3

Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

The corresponding inter-brane potential is given by

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right)$$

#### Nilpotent superfield framework:

The setup can be studied using non-linear SUSY with a **goldstino** superfield X breaking SUSY, a **Kähler modulus**  $\tau \equiv (T + \overline{T})$  and the **inflaton** *r* defining the EFT:





*D*3

Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

The corresponding inter-brane potential is given by

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right)$$

#### Nilpotent superfield framework:

The setup can be studied using non-linear SUSY with a **goldstino** superfield X breaking SUSY, a **Kähler modulus**  $\tau \equiv (T + \overline{T})$  and the **inflaton** *r* defining the EFT:

$$K = -3 \ln \left[ f(\sigma) + (X + \overline{X}) g(\sigma) - X \overline{X} h(\sigma) \right] \quad \text{and} \quad W = W_0 + X W_X(r) \,,$$

where  $\sigma = \tau - \frac{1}{6} (M_{KK}r)^2$ , and not  $\tau$ , is the modulus stabilised during inflation guaranteeing the **absence of the**  $\eta$ **-problem**. The corresponding scalar potential is then

$$V = \frac{1}{U} \left[ \left( f'W_X - 3g'W_0 \right)^2 - f'' \left( fW_X^2 - 6gW_X W_0 - 9hW_0^2 \right) \right]$$

With  $U \equiv 3f^2 \left( 2gf'g' - fg'^2 + f'^2h - f''(g^2 + fh) \right)$  such that at tree-level<sup>†</sup>  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

Then, we divide out analysis in two possible scenarios:

- Non-trivial linear term:  $g(\sigma) \neq 0$ .
- Vanishing linear term:  $g(\sigma) = 0$ .

<sup>†</sup>: At tree level  $f = \sigma, g = 0$  and h = 1.





D3

Type IIB string theory compactified on a CY threefold in the presence of fluxes:

$$ds^{2} = \tilde{g}_{MN} dx^{M} dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}.$$

The corresponding inter-brane potential is given by

$$V = 2T_3 e^{-4\rho(0)} \mathcal{V}^{2/3} \left( 1 - \frac{T_3 e^{-4\rho(0)} \mathcal{V}^{2/3}}{r^4} \right)$$

#### Nilpotent superfield framework:

The setup can be studied using non-linear SUSY with a **goldstino** superfield X breaking SUSY, a **Kähler modulus**  $\tau \equiv (T + \overline{T})$  and the **inflaton** *r* defining the EFT:

$$K = -3 \ln \left[ f(\sigma) + (X + \overline{X}) g(\sigma) - X \overline{X} h(\sigma) \right] \quad \text{and} \quad W = W_0 + X W_X(r) \,,$$

where  $\sigma = \tau - \frac{1}{6} (M_{KK}r)^2$ , and not  $\tau$ , is the modulus stabilised during inflation guaranteeing the **absence of the**  $\eta$ **-problem**. The corresponding scalar potential is then

$$V = \frac{1}{U} \left[ \left( f'W_X - 3g'W_0 \right)^2 - f'' \left( fW_X^2 - 6gW_X W_0 - 9hW_0^2 \right) \right]$$

With  $U \equiv 3f^2 \left( 2gf'g' - fg'^2 + f'^2h - f''(g^2 + fh) \right)$  such that at tree-level<sup>†</sup>  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

Then, we divide out analysis in two possible scenarios:

- Non-trivial linear term:  $g(\sigma) \neq 0$ .
- Vanishing linear term:  $g(\sigma) = 0$ .

<sup>†</sup>: At tree level  $f = \sigma, g = 0$  and h = 1.





 $(\overline{D3}\text{-}brane\ contribution\ if\ we\ identify}\ W_X$  with the warp factor).

D3







Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \,.$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \,.$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \,.$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

1. Branes annihilate and the scalar potential above vanishes.





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

1. Branes annihilate and the scalar potential above vanishes.





#### <u>INEAR</u> TERM INCLUDED

Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,




Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

 $\sigma_{\min} < \tau_{\max}.$ 





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad {\rm for} \qquad e^{2\rho} \gg 1 \, .$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

 $\sigma_{\min} < \tau_{\max}.$ 





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}$$
.

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha'^3)$ , i.e.,





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}.$$

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha^{'3})$ , i.e.,

$$f(\sigma) = \sigma + \frac{\xi}{3g_s^{3/2}\sqrt{\sigma}}, \qquad g(\sigma) = g_s \ln \sigma, \qquad h(\sigma) = 1,$$





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}.$$

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha'^3)$ , i.e.,  $f(\sigma) = \sigma + \frac{\xi}{3g_s^{3/2}\sqrt{\sigma}}, \qquad g(\sigma) = g_s \ln \sigma, \qquad h(\sigma) = 1,$  $1 - (3g_s W_0)^2 - 3\xi W_0^2$ 

which implies the scalar potential,  $V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2 + \frac{3\xi W_0^2}{4g_s^{3/2}\sigma^{9/2}}.$ 





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}.$$

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha'^3)$ , i.e.,  $f(\sigma) = \sigma + \frac{\xi}{3g_s^{3/2}\sqrt{\sigma}}, \qquad g(\sigma) = g_s \ln \sigma, \qquad h(\sigma) = 1,$  $1 - (3g_s W_0)^2 - 3\xi W_0^2$ 

which implies the scalar potential,  $V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2 + \frac{3\xi W_0^2}{4g_s^{3/2}\sigma^{9/2}}.$ 





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}.$$

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha'^3)$ , i.e.,  $f(\sigma) = \sigma + \frac{\xi}{3g_s^{3/2}\sqrt{\sigma}}, \qquad g(\sigma) = g_s \ln \sigma, \qquad h(\sigma) = 1,$ which implies the scalar potential,  $V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2 + \frac{3\xi W_0^2}{4g_s^{3/2}\sigma^{9/2}}.$ For large field values, this can be expanded as  $V_{inf}(\varphi) \simeq C_0 \left( 1 - \frac{C_1}{\varphi^4} \right)$  (power-law with n = 4),  $9\xi = e^{-9\rho} \qquad 9\mathfrak{D}_0 T_2^2$ 

where 
$$C_0 \equiv \frac{9\xi}{192\sqrt{2}(3\pi)^{9/4}g_s^6} \frac{e^{-5\rho}}{W_0^{5/2}}$$
 and  $C_1 \equiv \frac{9\mathcal{D}_0 I_3^2}{4M_{KK}^4}$ .





Considering a linear dependence of  $e^{-K/3}$  on X such as  $f = \sigma$ ,  $g = g_s \ln \sigma$  and h = 1; the resulting scalar potential is a perfect square:

$$V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2,$$

which admits a Minkowski minimum at

$$\sigma_{\min} = 3g_s \frac{W_0}{W_X} \simeq 2\sqrt{3\pi} \, g_s W_0 \, e^{2\rho} \gg 1 \qquad \text{for} \qquad e^{2\rho} \gg 1 \, . \label{eq:sigma_matrix}$$

We need to add leading perturbative corrections to  $f(\sigma)$  to uplift this vacuum to dS. Which ones are relevant?

- 1. Branes annihilate and the scalar potential above vanishes.
- 2. Volume mode relaxes at the post-inflationary minimum to avoid decompactification,

$$\sigma_{\min} < \tau_{\max}.$$

3.- In this case, the leading order perturbative correction is the one at  $\mathcal{O}(\alpha'^3)$ , i.e.,

$$f(\sigma) = \sigma + \frac{\zeta}{3g_s^{3/2}\sqrt{\sigma}}, \qquad g(\sigma) = g_s \ln \sigma, \qquad h(\sigma) = 1,$$

which implies the scalar potential,  $V \simeq \frac{1}{3\sigma^2} \left( W_X - \frac{3g_s W_0}{\sigma} \right)^2 + \frac{3\xi W_0^2}{4g_s^{3/2}\sigma^{9/2}}.$ 

For large field values, this can be expanded as  $V_{inf}(\varphi) \simeq C_0 \left(1 - \frac{C_1}{\varphi^4}\right)$  (power-law with n = 4), where  $C_0 \equiv \frac{9\xi}{192\sqrt{2}(3\pi)^{9/4}g_s^6} \frac{e^{-9\rho}}{W_0^{5/2}}$  and  $C_1 \equiv \frac{9\mathcal{D}_0 T_3^2}{4M_{KK}^4}$ .





#### LINEAR TERM INCLUDED

**Uplifted dS minimum during inflation** 



Figure: The parameter choices of this example are  $\theta = 0.994$ ,  $g_s = 1/15$ ,  $W_0 = 1$ ,  $W_X = 10^{-6}$ ,  $T_7 = 2\pi$  and  $\xi = 0.1$ .



Figure: The parameters used to generate this plot are  $\xi = g_s = 0.1$ ,  $W_0 = 1$ ,  $W_X = 10^{-3}$  and  $T_7 = 2\pi$ , while  $\theta = 0.994$ .





# W<u>ITHOUT</u> LINEAR TERM





There is no linear dependence of  $e^{-K/3}$  on X such that  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

To stabilise the volume mode  $\sigma$ , we include logarithmic redefinitions to  $f(\sigma)$  resulting in

$$V \simeq \frac{W_X^2}{3\sigma^2} + 3W_0^2 \left[ \frac{\alpha}{\sigma^4} - \frac{\xi\sqrt{g_s}}{4c\sigma^{9/2}} \left( \ln \sigma - \frac{c}{g_s^2} \right) \right],$$

with  $\tau_{\min} \simeq \sigma_{\min}$  and  $W_X \simeq e^{-2\rho} \ll 1$ . Then, the inflationary vacuum energy is:

$$V(\sigma_{\min}) \simeq \frac{W_X^2}{3\sigma_{\min}^2} \simeq \frac{e^{-\frac{2c}{g_s^2}}}{3\lambda_0^2} W_X^2 \quad \text{which reproduces } V_{\inf}(r) = \frac{\mathscr{C}_0}{\mathscr{V}_{\min}^{4/3}} \left[ 1 - \frac{\mathscr{D}_0}{\left(rM_{KK}\right)^4} \right]$$





There is no linear dependence of  $e^{-K/3}$  on X such that  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

To stabilise the volume mode  $\sigma$ , we include logarithmic redefinitions to  $f(\sigma)$  resulting in

$$V \simeq \frac{W_X^2}{3\sigma^2} + 3W_0^2 \left[ \frac{\alpha}{\sigma^4} - \frac{\xi \sqrt{g_s}}{4c\sigma^{9/2}} \left( \ln \sigma - \frac{c}{g_s^2} \right) \right],$$

with  $\tau_{\min} \simeq \sigma_{\min}$  and  $W_X \simeq e^{-2\rho} \ll 1$ . Then, the inflationary vacuum energy is:

$$W(\sigma_{\min}) \simeq \frac{W_X^2}{3\sigma_{\min}^2} \simeq \frac{e^{-\frac{2c}{g_s^2}}}{3\lambda_0^2} W_X^2$$
 which reproduces  $V_{\inf}(r) = \frac{\mathscr{C}_0}{\mathscr{V}_{\min}^{4/3}} \left[ 1 - \frac{\mathscr{D}_0}{\left(rM_{KK}\right)^4} \right]$ 







There is no linear dependence of  $e^{-K/3}$  on X such that  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

To stabilise the volume mode  $\sigma$ , we include logarithmic redefinitions to  $f(\sigma)$  resulting in

$$V \simeq \frac{W_X^2}{3\sigma^2} + 3W_0^2 \left[ \frac{\alpha}{\sigma^4} - \frac{\xi\sqrt{g_s}}{4c\sigma^{9/2}} \left( \ln \sigma - \frac{c}{g_s^2} \right) \right],$$

with  $\tau_{\min} \simeq \sigma_{\min}$  and  $W_X \simeq e^{-2\rho} \ll 1$ . Then, the inflationary vacuum energy is:

$$V(\sigma_{\min}) \simeq \frac{W_X^2}{3\sigma_{\min}^2} \simeq \frac{e^{-\frac{2c}{g_s^2}}}{3\lambda_0^2} W_X^2 \quad \text{which reproduces } V_{\inf}(r) = \frac{\mathscr{C}_0}{\mathscr{V}_{\min}^{4/3}} \left[ 1 - \frac{\mathscr{D}_0}{\left(rM_{KK}\right)^4} \right]$$



Figure: The parameters used to generate this plot are  $\xi = g_s = 0.1$ ,  $W_0 = 1$ ,  $W_X^2 = 10^{-7}$  and  $T_7 = 2\pi$ , with  $\theta = 0.994$ .





There is no linear dependence of  $e^{-K/3}$  on X such that  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

To stabilise the volume mode  $\sigma$ , we include logarithmic redefinitions to  $f(\sigma)$  resulting in

$$V \simeq \frac{W_X^2}{3\sigma^2} + 3W_0^2 \left[ \frac{\alpha}{\sigma^4} - \frac{\xi\sqrt{g_s}}{4c\sigma^{9/2}} \left( \ln \sigma - \frac{c}{g_s^2} \right) \right],$$

with  $\tau_{\min} \simeq \sigma_{\min}$  and  $W_X \simeq e^{-2\rho} \ll 1$ . Then, the inflationary vacuum energy is:

$$W(\sigma_{\min}) \simeq \frac{W_X^2}{3\sigma_{\min}^2} \simeq \frac{e^{-\frac{2c}{g_s^2}}}{3\lambda_0^2} W_X^2 \quad \text{which reproduces } V_{\inf}(r) = \frac{\mathscr{C}_0}{\mathscr{V}_{\min}^{4/3}} \left[ 1 - \frac{\mathscr{D}_0}{\left(rM_{KK}\right)^4} \right]$$



Figure: The parameters used to generate this plot are  $\xi = g_s = 0.1$ ,  $W_0 = 1$ ,  $W_X^2 = 10^{-7}$  and  $T_7 = 2\pi$ , with  $\theta = 0.994$ .





There is no linear dependence of  $e^{-K/3}$  on X such that  $V = \frac{W_X(r)^2}{3\sigma^2}$ .

To stabilise the volume mode  $\sigma$ , we include logarithmic redefinitions to  $f(\sigma)$  resulting in

$$V \simeq \frac{W_X^2}{3\sigma^2} + 3W_0^2 \left[ \frac{\alpha}{\sigma^4} - \frac{\xi \sqrt{g_s}}{4c\sigma^{9/2}} \left( \ln \sigma - \frac{c}{g_s^2} \right) \right],$$

with  $\tau_{\min} \simeq \sigma_{\min}$  and  $W_X \simeq e^{-2\rho} \ll 1$ . Then, the inflationary vacuum energy is:

$$V(\sigma_{\min}) \simeq \frac{W_X^2}{3\sigma_{\min}^2} \simeq \frac{e^{-\frac{2c}{g_s^2}}}{3\lambda_0^2} W_X^2 \quad \text{which reproduces } V_{\inf}(r) = \frac{\mathscr{C}_0}{\mathscr{V}_{\min}^{4/3}} \left[ 1 - \frac{\mathscr{D}_0}{\left(rM_{KK}\right)^4} \right]$$



Figure: The parameters used to generate this plot are  $\xi = g_s = 0.1$ ,  $W_0 = 1$ ,  $W_X^2 = 10^{-7}$  and  $T_7 = 2\pi$ , with  $\theta = 0.994$ .





### Consistency conditions







### Consistency conditions















• We focused on the brane-antibrane inflationary model.







• We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001]







• We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001]

[G. Dvali, Q. Shafi and S. Solganik, 2001]







• We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001]

[G. Dvali, Q. Shafi and S. Solganik, 2001]







- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001]
  - - [G. Dvali, Q. Shafi and S. Solganik, 2001]
- Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.







- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001]
  - - [G. Dvali, Q. Shafi and S. Solganik, 2001]
- Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally).





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
- After imposing compatibility with observations and consistency conditions over the EFT, we found large regions of the underlying UV parameter space where brane-antibrane inflation can be successfully realised with:





- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{'3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
- After imposing compatibility with observations and consistency conditions over the EFT, we found large regions of the underlying UV parameter space where brane-antibrane inflation can be successfully realised with:




# SUMMARY

- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
- After imposing compatibility with observations and consistency conditions over the EFT, we found large regions of the underlying UV parameter space where brane-antibrane inflation can be successfully realised with:

1. Enough e-foldings.





# SUMMARY

- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
- After imposing compatibility with observations and consistency conditions over the EFT, we found large regions of the underlying UV parameter space where brane-antibrane inflation can be successfully realised with:
  - 1. Enough e-foldings.
  - 2. The right amplitude and spectral index of scalar fluctuations.





# SUMMARY

- We focused on the brane-antibrane inflationary model. [C. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G.Rajesh and R.-J. Zhang, 2001] [G. Dvali, Q. Shafi and S. Solganik, 2001] • Following KKLMT, we introduced warping to obtain a flat potential, but contrary to them, we stabilised the volume modulus with leading  $\alpha'$  and  $g_s$  corrections to the action.
- In this way we managed to avoid the  $\eta$ -problem and derived for the first time the inverse power-law potential instead of the tuned inflection point model (ruled out experimentally). [D. Baumann, A. Dymarsky and I.R. Klebanov and L. McAllister, 2008]
- We described the Coulomb interaction of the  $D3-\overline{D3}$ -pair in a manifestly supersymmetric EFT thanks to the introduction of a nilpotent superfield X.
- In the presence of a linear dependence of  $e^{-K/3}$  on X, we discovered a new perfect-square structure of the scalar potential, which allows fixing the volume mode during inflation at a Minkowski minimum uplifted to dS by subdominant  $\mathcal{O}(\alpha^{3})$  corrections.
- If instead  $e^{-K/3}$  does not feature any linear dependence on X, we showed that the volume mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
- After imposing compatibility with observations and consistency conditions over the EFT, we found large regions of the underlying UV parameter space where brane-antibrane inflation can be successfully realised with:
  - 1. Enough e-foldings.
  - 2. The right amplitude and spectral index of scalar fluctuations.
  - 3. Tensor-to-scalar ratio far below current observational bounds.













• Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.







• Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.





- Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.
- Realising a concrete realising a concrete Calabi-Yau orientifold compactification with explicit brane setup and tadpole cancellation which features an  $\overline{D3}$ -brane at the tip of a warped throat together with 3-form fluxes that stabilise the dilaton and the complex structure moduli in such a way to reproduce values of  $g_s$  and  $W_0$  that lie within the allowed parameter space of our construction.





- Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.
- Realising a concrete realising a concrete Calabi-Yau orientifold compactification with explicit brane setup and tadpole cancellation which features an  $\overline{D3}$ -brane at the tip of a warped throat together with 3-form fluxes that stabilise the dilaton and the complex structure moduli in such a way to reproduce values of  $g_s$  and  $W_0$  that lie within the allowed parameter space of our construction.





- Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.
- Realising a concrete realising a concrete Calabi-Yau orientifold compactification with explicit brane setup and tadpole cancellation which features an  $\overline{D3}$ -brane at the tip of a warped throat together with 3-form fluxes that stabilise the dilaton and the complex structure moduli in such a way to reproduce values of  $g_s$  and  $W_0$  that lie within the allowed parameter space of our construction.
- In the future, we plan to exploit the results of these papers to address the crucial issue of embedding brane-antibrane inflation in globally consistent Calabi-Yau compactifications.





- Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.
- Realising a concrete realising a concrete Calabi-Yau orientifold compactification with explicit brane setup and tadpole cancellation which features an  $\overline{D3}$ -brane at the tip of a warped throat together with 3-form fluxes that stabilise the dilaton and the complex structure moduli in such a way to reproduce values of  $g_s$  and  $W_0$  that lie within the allowed parameter space of our construction.
- In the future, we plan to exploit the results of these papers to address the crucial issue of embedding brane-antibrane inflation in globally consistent Calabi-Yau compactifications.





- Studying in detail the end of inflation: tachyonic waterfall after brane-antibrane annihilation.
- Realising a concrete realising a concrete Calabi-Yau orientifold compactification with explicit brane setup and tadpole cancellation which features an  $\overline{D3}$ -brane at the tip of a warped throat together with 3-form fluxes that stabilise the dilaton and the complex structure moduli in such a way to reproduce values of  $g_s$  and  $W_0$  that lie within the allowed parameter space of our construction.
- In the future, we plan to exploit the results of these papers to address the crucial issue of embedding brane-antibrane inflation in globally consistent Calabi-Yau compactifications.





"I am just a child who has never grown up. I still keep asking these 'how' and 'why' questions. Occasionally, I find an answer."

-S. Hawking.

AND THE DESCRIPTION OF A DESCRIPTION OF

# THANK YOU!



Mario Ramos Hamud Email: <u>mr895@cam.ac.uk</u> DAMTP | University of Cambridge

# **BACKUP SLIDES**









#### **String compactifications**





#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.





#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.

#### <u>Dine-Seiberg problem</u>





#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.

Dine-Seiberg problem [M. Dine. N. Seiberg, 1985]





#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.

#### Dine-Seiberg problem [M. Dine. N. Seiberg, 1985]







#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.

# 

#### **Dine-Seiberg problem** [M. Dine. N. Seiberg, 1985]





#### **String compactifications**

- The low energy effective action of string theories in 10d can be organised in a double expansion: the  $\alpha'$  and  $g_s$  expansions. The six extra dimensions must be **compactified**.
- After compactification, a requirement that some supersymmetry is preserved implies that the internal manifold is a Calabi-Yau manifold with a characteristic **shape** and **volume**.
- Upon dimensional reduction, this leads to massless (complex) scalars called **moduli** which must be **stabilised** to avoid fifth forces.



#### **Dine-Seiberg problem** [M. Dine. N. Seiberg, 1985]

- Region I: out of the domain of parametric control of the EFT (small  $\mathcal{V}$ /strong  $g_s$ ).
- Region II: requires extra ingredients in the compactification to get a minimum.
- Region III: runaway region which is the only one fully trustable in the EFT.

If the scalar potential has a minimum, it is generically at  $s \sim \tau \sim O(1)$ .





#### η-problem

Consider the Kähler potential

$$K\simeq -3\ln[\tau-\phi\bar{\phi}+\cdots].$$

when  $\tau$  is fixed by **non-perturbative effects**,  $\phi \bar{\phi}$  induces a correction to the inflaton potential given by

$$V_{\text{correction}} \sim \frac{V_{\text{original}}}{\tau^3} \phi \bar{\phi},$$
  
with  $V_{\text{original}}$  fixing the Hubble scale during inflation:  $H_I^2 \sim \frac{V_{\text{original}}}{\tau^3}$ 

- The mass contribution of the inflaton is  $m_{\phi}^2 \sim \frac{V_{\text{original}}}{\tau^3} \sim H_I^2$
- Slow roll parameter:  $\eta \sim \frac{V''}{V} \sim \frac{m_{\phi}^2}{H_I^2} \sim 1 \Rightarrow \text{No longer slow-roll inflation!}$

# $\eta\text{-}\mathrm{problem}$ can be avoided by doing a **perturbative stabilisation of the volume modulus.**





#### Compatibility with data

We use the Planck data for observational constraints on the amplitude of density perturbations and the spectral index  $n_s$ . It can be shown that CMB observations can be matched at horizon exit around  $N_e = 56$  e-foldings before the end of inflation where:

$$V_{\text{inf}} \simeq 10^{-17} M_p^4$$
,  $\varphi_* = 10^{-3} M_p$ , and  $r \sim 2 \times 10^{-8}$ ,

with a tiny tensor-to-scalar ratio r that is far from the present observational reach.

The value of the scalar potential at horizon exit can be used to express  $\rho$  in terms of the other UV parameters  $\rightarrow$  number of free parameters reduced to three:  $W_0, g_s$  and K.



