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Inflation stands as the standard realisation of  early universe cosmology. Concave potentials 
favoured experimentally:      


V(ϕ) = A −
B
ϕn

+ ⋯ or V(ϕ) = C − De−aϕ + ⋯

UV completion? Several proposals from string theory for the exponential potential such as fibre 
inflation.

For the inverse power potential: brane-antibrane potential is a first example, however without 
modulus stabilisation.

We provide concrete examples within string theory with modulus stabilisation and 
inverse power law inflation potential in the presence of  the volume modulus.
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9
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Given that most of  the known Calabi-Yau threefolds with  have , we fix 
 obtaining


,


exactly in the right ballpark if   were given in terms of  the 1-loop -function coefficient of  
an  theory as .

ξ > 0 ξ ∈ (0.1,1.5)
c = ζ(3)/π3

θ ≃ 1 ⇔ α ≃ 4.78 gs e− 0.02
g2s ≃ 0.22 for gs ≃ 0.1

α β
SU(2) α = β0/(8π) = 3/(4π) ≃ 0.24
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Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

D3

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

D3

D3

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

D3

D3

Nilpotent superfield framework:

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

D3

D3
The setup can be studied using non-linear SUSY with a 
goldstino superfield X breaking SUSY, a Kähler 
modulus  and the inflaton  defining the EFT: 
τ ≡ (T + T ) r

Nilpotent superfield framework:

WISPs in String 
Cosmology



Brane-antibrane inflation
Type IIB string theory compactified on a CY threefold in the presence of  fluxes:


.


The corresponding inter-brane potential is given by





ds2 = g̃MNdxMdxN = (1 +
e4ρ(y)

𝒱2/3 )
−1/2

ds2
4 + (1 +

e4ρ(y)

𝒱2/3 )
1/2

ds2
CY

V = 2T3e−4ρ(0)𝒱2/3 (1 −
T3e−4ρ(0)𝒱2/3

r4 ) .

D3

D3
The setup can be studied using non-linear SUSY with a 
goldstino superfield X breaking SUSY, a Kähler 
modulus  and the inflaton  defining the EFT: 
τ ≡ (T + T ) r

Nilpotent superfield framework:
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where  , and not , is the modulus stabilised during inflation guaranteeing 

the absence of  the -problem. The corresponding scalar potential is then





With  such that at tree-level  


Then, we divide out analysis in two possible scenarios:

• Non-trivial linear term: .

• Vanishing linear term: 


: At tree level  and . 

K = − 3 ln [f(σ) + (X + X ) g(σ) − XXh(σ)] and W = W0 + X WX(r)

σ = τ −
1
6 (MKKr)2 τ

η

V =
1
U [(f′￼WX − 3g′￼W0)2 − f′￼′￼(f W2

X − 6gWXW0 − 9hW2
0)]

U ≡ 3f 2 (2gf′￼g′￼− fg′￼2 + f ′￼2h − f′￼′￼(g2 + f h)) † V =
WX(r)2

3σ2
.

g(σ) ≠ 0
g(σ) = 0.

† f = σ, g = 0 h = 1
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 with the warp factor).
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which admits a Minkowski minimum at

.σmin = 3gs
W0

WX
≃ 2 3π gsW0 e2ρ ≫ 1 for e2ρ ≫ 1

We need to add leading perturbative corrections to  to uplift this vacuum to dS. Which ones are relevant?f(σ)
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where 

Vinf(φ) ≃ C0 (1 −
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W5/2
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4M4
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Linear term included

Figure: The parameter choices of  this example are , , , ,  and .θ = 0.994 gs = 1/15 W0 = 1 WX = 10−6 T7 = 2π ξ = 0.1

Uplifted dS minimum during inflation

Early and late time potentials

Figure: The parameters used to generate this plot are , ,  and , while .ξ = gs = 0.1 W0 = 1 WX = 10−3 T7 = 2π θ = 0.994

Inflationary potential
Late time potential

V inf
min ∼ 10−15

Vmin ∼ 10−16
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Without linear term
There is no linear dependence of   on  such that 


To stabilise the volume mode , we include logarithmic redefinitions to  resulting in





with  and . Then, the inflationary vacuum energy is: 


   which reproduces 


with the volume modulus stabilised by perturbative corrections  no -problem.

e−K/3 X V =
WX(r)2

3σ2
.

σ f(σ)

V ≃
W2

X

3σ2
+ 3W2

0 [ α
σ4

−
ξ gs

4cσ9/2 (ln σ −
c
g2

s )],

τmin ≃ σmin WX ≃ e−2ρ ≪ 1

V(σmin) ≃
W2

X

3σ2
min

≃
e− 2c

g2s

3λ2
0

W2
X Vinf(r) =

𝒞0

𝒱4/3
min

1 −
𝒟0

(rMKK)4 ,

→ η
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Consistency conditions
• -brane in the throat: 


.


• Gravitino mass below warped string scale: 


.


• Dilute flux approximation under control: .


• Curvature corrections under control: 


• Conifold modulus stability: 


D3

27 MK
4(4π)3σ3

min
(σmin e−4ρ) ≪ ( φ

Mp )
4

<
27 MK

4(4π)3σ3
min

m3/2

Ms,warped
≃

g1/4
s W0

2 σmin

eρ ≪ 1 ⇔ σmin ≫
g1/4

s W0

2
eρ

σmin > MK

gsM > 1.

gsM2 ≥ 46.

With linear contributions Without linear contributions
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Figures: Allowed UV parameter spaces. The parameters used are  and , with .ξ = 0.1 T7 = 2π θ = 0.994
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mode can still be fixed at a dS vacuum by exploiting logarithmic moduli redefinitions.
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• After imposing compatibility with observations and consistency conditions over the EFT, 
we found large regions of  the underlying UV parameter space where brane-antibrane 
inflation can be successfully realised with: 

1. Enough e-foldings.
2. The right amplitude and spectral index of  scalar fluctuations. 
3. Tensor-to-scalar ratio far below current observational bounds.
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• Studying in detail the end of  inflation: tachyonic waterfall after brane-antibrane 
annihilation. 

• Realising a concrete realising a concrete Calabi-Yau orientifold compactification with 
explicit brane setup and tadpole cancellation which features an -brane at the tip of  a 
warped throat together with 3-form fluxes that stabilise the dilaton and the complex 
structure moduli in such a way to reproduce values of   and  that lie within the allowed 
parameter space of  our construction.
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embedding brane-antibrane inflation in globally consistent Calabi-Yau compactifications.
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THANK YOU!

Mario Ramos Hamud

Email: mr895@cam.ac.uk


DAMTP | University of Cambridge

“I am just a child who has never grown up. I still keep asking these 'how' and 'why' questions. 
Occasionally, I find an answer.”


-S. Hawking. 

mailto:mr895@cam.ac.uk
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Modulus stabilisation

• The low energy effective action of  string theories in 10d can be organised in a double 
expansion: the  and  expansions. The six extra dimensions must be compactified. 


• After compactification, a requirement that some supersymmetry is preserved implies that 
the internal manifold is a Calabi-Yau manifold with a characteristic shape and volume. 


• Upon dimensional reduction, this leads to massless (complex) scalars called moduli 
which must be stabilised to avoid fifth forces.

α′￼ gs
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Modulus stabilisation

•  Region I: out of  the domain of  parametric control of  the EFT (small /strong ).


•  Region II: requires extra ingredients in the compactification to get a minimum.


•  Region III: runaway region which is the only one fully trustable in the EFT.


If  the scalar potential has a minimum, it is generically at .

𝒱 gs

s ∼ τ ∼ 𝒪(1)

Dine-Seiberg problem [M. Dine. N. Seiberg, 1985] 

• The low energy effective action of  string theories in 10d can be organised in a double 
expansion: the  and  expansions. The six extra dimensions must be compactified. 


• After compactification, a requirement that some supersymmetry is preserved implies that 
the internal manifold is a Calabi-Yau manifold with a characteristic shape and volume. 


• Upon dimensional reduction, this leads to massless (complex) scalars called moduli 
which must be stabilised to avoid fifth forces.
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-problemη
Consider the Kähler potential


.


when  is fixed by non-perturbative effects,  induces a correction to the 
inflaton potential given by


,


with  fixing the Hubble scale during inflation: .


•  The mass contribution of  the inflaton is 


• Slow roll parameter:    No longer slow-roll inflation!


-problem can be avoided by doing a perturbative stabilisation of  the 
volume modulus.

K ≃ − 3 ln[τ − ϕϕ̄ + ⋯]

τ ϕϕ̄

Vcorrection ∼
Voriginal

τ3
ϕϕ̄

Voriginal H2
I ∼

Voriginal

τ3

m2
ϕ ∼

Voriginal

τ3
∼ H2

I

η ∼
V′￼′￼

V
∼

m2
ϕ

H2
I

∼ 1 ⇒

η
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We use the Planck data for observational constraints on the amplitude of  density 
perturbations and the spectral index . It can be shown that CMB observations can be 
matched at horizon exit around  e-foldings before the end of  inflation where:





with a tiny tensor-to-scalar ratio r that is far from the present observational reach. 


The value of  the scalar potential at horizon exit can be used to express ρ in terms of  the 
other UV parameters  number of  free parameters reduced to three:  and .


ns
Ne = 56

Vinf ≃ 10−17M4
p , φ* = 10−3Mp, and r ∼ 2 × 10−8,

→ W0, gs K

Experimental data

Compatibility with data
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