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D3 D3

KKLMMT [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

1. Inflation potential must consider the inflaton and the volume modulus 7.

2. Once 7" 1s considered, generic # problem when stabilising with non-perturbative
effects.

3. Concrete implementations lead to an inflection point potential (ruled out).

We provide concrete examples within string theory with modulus stabilisation and

inverse power law inflation potential in the presence of the volume modulus.
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where c; 15 a small topological quantity that has been estimated to be of order
107 - 107*.

o Non-Kdhler corrections: (N = 2)
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Perturbative corrections

O(a’) : no correction 1s known to arise at this order.
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Perturbative corrections

O(a’) : no correction 1s known to arise at this order.
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O(a’) : no correction 1s known to arise at this order.
O(a?) : 1-loop logarithmic four-cycle redefinitions: K = 31n(z) - K = — 31In(z — aln1).

O(a”) : several corrections at this order, but the relevant are: [D- Klaewer, 5.J. Lee, T. Weigand, and M. Wiesner, 2021]
[M. Weissenbacher, 2020]

o Kdhler corrections:

5 2) 3T7

2(g57)"

W =2) [K. Becker, M. Becker, M. Haack, and J. Louis, 2002]

(N =2) [I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997]
[F. Bonetti and M. Weissenbacher, 2017]

(High [G. K. Leontaris and P. Shukla, 2022]
Wlth T7 — the D7-brane tGIlSiOIl and Curvature) [I. Antoniadis, Y. Chen, and G. K. Leontaris, 2018 & 2020]
(N =1) [M. Berg, M. Haack and S. Sjors, 2014]

c(3)

52_2@m3

20(2)
y(CY) + 2[ D} and Cy = ——,
oy TG
where y(CY) is the Galabi-Yau Euler number and Dy, the (1,1)-form dual to the
divisor wrapped by the O7-plane.

[D. Ciupke, J. Louis, and A. Westphal, 2015]
[T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

W
0
— C —_—
LF4 3\/g
S 11727

where c; 15 a small topological quantity that has been estimated to be of order
107 - 107*.

O(a™) : relevant corrections arise at 4/ = 2 and @(gsz) and read

[M. Berg, M. Haack, and B. Kors, 2005]
C [M. Berg, M. Haack, and E. Pajer, 2007]
K ~ _4 [X. Gao, A. Hebecker, S. Schreyer, and G. Venken, 20022]
Ogiat) = 5
85 TZ

o Non-Kdhler corrections: (N = 2)

WISPs in String
Cosmology




I1B STRING COMPACTIFICATIONS
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[F. Bonetti and M. Weissenbacher, 2017]

(High [G. K. Leontaris and P. Shukla, 2022]
Wlth T7 — the D7-brane tGIlSiOIl and Curvature) [I. Antoniadis, Y. Chen, and G. K. Leontaris, 2018 & 2020]
(N =1) [M. Berg, M. Haack and S. Sjors, 2014]

c(3)

52_2@m3

2¢(2)
y(CY)+2 LY DE’W and Cy = % ,

where y(CY) is the Galabi-Yau Euler number and Dy, the (1,1)-form dual to the
divisor wrapped by the O7-plane.

[D. Ciupke, J. Louis, and A. Westphal, 2015]
[T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]
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0
— C —_—
LF4 3\/g
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where c; 15 a small topological quantity that has been estimated to be of order
107 - 107*.

O(a™) : relevant corrections arise at 4/ = 2 and @(gsz) and read

o Non-Kdhler corrections: (N = 2)

[M. Berg, M. Haack, and B. Kors, 2005]
C [M. Berg, M. Haack, and E. Pajer, 2007]
4

K ~ T X. Gao, A. Hebecker, S. Schreyer, and G. Venken, 20022]
O(ga™) = o
s 72 [G. von Gersdorff and A. Hebecker, 2005]
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Perturbative corrections

O(a’) : no correction 1s known to arise at this order.
O(a?) : 1-loop logarithmic four-cycle redefinitions: K = 31n(z) - K = — 31In(z — aln1).

O(a”) : several corrections at this order, but the relevant are: [D- Klaewer, 5.J. Lee, T. Weigand, and M. Wiesner, 2021]
[M. Weissenbacher, 2020]

o Kdhler corrections:

5 2) 3T7

2(g57)"

W =2) [K. Becker, M. Becker, M. Haack, and J. Louis, 2002]

(N =2) [I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, 1997]
[F. Bonetti and M. Weissenbacher, 2017]

(High [G. K. Leontaris and P. Shukla, 2022]
Wlth T7 — the D7-brane tGIlSiOIl and Curvature) [I. Antoniadis, Y. Chen, and G. K. Leontaris, 2018 & 2020]
(N =1) [M. Berg, M. Haack and S. Sjors, 2014]

c(3)

52_2@m3

2¢(2)
y(CY)+2 LY DE’W and Cy = % ,

where y(CY) is the Galabi-Yau Euler number and Dy, the (1,1)-form dual to the
divisor wrapped by the O7-plane.

[D. Ciupke, J. Louis, and A. Westphal, 2015]
[T. W. Grimm, K. Mayer, and M. Weissenbacher, 2018]

W
0
— C —_—
LF4 3\/g
S 11727

where c; 15 a small topological quantity that has been estimated to be of order
107 - 107*.

O(a™) : relevant corrections arise at 4/ = 2 and @(gsz) and read

o Non-Kdhler corrections: (N = 2)

[M. Berg, M. Haack, and B. Kors, 2005]

C [M. Berg, M. Haack, and E. Pajer, 2007]
Koo o _4 [X. Gao, A. Hebecker, S. Schreyer, and G. Venken, 20022]
Ogsa™) 72 > [G. von Gersdorff and A. Hebecker, 2005]

where ¢, 13 a function of the complex structure modull.
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* a > 0 and small: uplifting to Minkowski or dS. The minimum and maximum given by
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Toin = A0€% T =A_je5 with 4 = e7 e 270l and 9 = A P ,
NG
where 7, (x) with k =0, — 1 are the 0- and (—1)-branches of the Lambert function 7", (x)
defined as 7, (x)e” Y = x, and a ~ (&/ c)\/ g/t
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To obtain de Sitter:
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The leading order contributions of the corrections can be captured by

K~—-3In|t—alnt+ ] (c—gszlnf) :
30853/2\/;
(3 B

= 0.04 .
3(2)T, 3

N.B. We consider the dilaton and the complex structure moduli fixed at tree-level by 3-form fluxes which
induce a constant superpotential W,

No-scale property 1s broken by perturbative corrections which at leading order result in the

scalar potential
14 Q. S/ 8s
= K[ KK K —1) = Z Inz—— ).
3W3 3 Y g2

e a =0and & > 0 : potential admits and AdS" at 7 ~ %% > 1 for g¢ < 1.

* a > 0 and small: uplifting to Minkowski or dS. The minimum and maximum given by

c c 16 3 _c_
Toin = A0€% T =A_je5 with 4 = e7 e 270l and 9 = A P ,
NG
where 7, (x) with k =0, — 1 are the 0- and (—1)-branches of the Lambert function 7", (x)
defined as 7, (x)e” Y = x, and a ~ (&/ c)\/ g/t

min-

To obtain de Sitter:
0. ~0993 <0< 1.

T The uplifing could come from several different sources like, for example, a D3-brane mn a different throat from the
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Given that most of the known Calabi-Yau threetolds with £ > 0 have £ € (0.1,1.5), we fix
¢ = {(3)/n° obtaining

0.02

0~ 1 = a 4.78\/§s e ¢ ~0.22 for g, ~0.1,

exactly in the right ballpark it @ were given 1n terms of the 1-loop f-function coethicient of
an SU(2) theory as a = ,/(8x) = 3/(4x) ~ 0.24.
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Given that most of the known Calabi-Yau threetolds with £ > 0 have £ € (0.1,1.5), we fix
Cc = 5(3)/71.3 obtaining [M. Kreuzer and H. Sharke , 2000]

0.02

0~ 1 = a 4.78\/§s e ¢ ~0.22 for g, ~0.1,

exactly in the right ballpark it @ were given 1n terms of the 1-loop f-function coethicient of
an SU(2) theory as a = ,/(8x) = 3/(4x) ~ 0.24.

Late time inflationary potential for a~6
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Given that most of the known Calabi-Yau threetolds with £ > 0 have £ € (0.1,1.5), we fix
Cc = 5(3)/71.3 obtaining [M. Kreuzer and H. Sharke , 2000]

0.02

0 ~1 & a~478,/g.e & ~0.22 for g, ~0.1,

exactly in the right ballpark it @ were given 1n terms of the 1-loop f-function coethicient of
an SU(2) theory as a = ,/(8x) = 3/(4x) ~ 0.24.

Late time inflationary potential for a~6

V
5 x10-1 | | — 9=0098
6 = 0.985
-13 |
20 9 =0.99
— ©=0.995
1x1074 |
NN 9=
200 400 600 800 1000
X107 | — ©=1.005

Fugure: We set € =g, =0.1 and T, =2x. By wcreasing 0 we move from AdS to dS and finally to a runaway. In
particular, the red curve shows a dS minimum at t_. ~ 370 and V.. < 107 for an appropriate choice of 6.
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BRANE-ANTIBRANE INFLATION

Type IIB string theory compactified on a CY threefold in the presence of fluxes:
o o\ o\
ds” = gyndx"dx" = 1+ T ds; + 1+ 5273 dscy.

The corresponding inter-brane potential 1s given by

—4p(0)cr2/3
V = 2T~ 0g2 <1 T ) |

i
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Type IIB string theory compactified on a GY threefold in the presence of fluxes:

—1/2 1/2
4P etr(y)

T dsi+| 1+

The corresponding inter-brane potential 1s given by

ds* = gyndxMdx = [ 1+

Te —~4p(0)cy2/3
1 —
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Type IIB string theory compactified on a GY threefold in the presence of fluxes:
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4P etr(y)

dsf+ 1 +

ds* = gyndxMdx = [ 1+

2
dsCY.
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The corresponding inter-brane potential 1s given by

Te —~4p(0)cy2/3
1 —

V = 2T e~ O23
4
r

Nulpotent superfield framework:

The setup can be studied using non-linear SUSY with a
goldstino superfield X breaking SUSY, a Kaihler

modulus 7 = (T + T) and the inflaton r defining the EFT:
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Type IIB string theory compactified on a GY threefold in the presence of fluxes:
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4P etr(y)

dsf+ 1 +

ds* = gyndxMdx = [ 1+

9213 /213

The corresponding inter-brane potential 1s given by

Te —~4p(0)cy2/3

V = 2T e~ O23
4
r

Nulpotent superfield framework:

The setup can be studied using non-linear SUSY with a
goldstino superfield X breaking SUSY, a Kaihler
modulus 7 = (T + T) and the inflaton r defining the EFT:

K =-31In|f(0) + X+X)glo) — XXh(c)] and W=W,+X Wy(r),

1 2 . - L . .
where 6 = 7 — r (Mgxr)™ , and not 7, is the modulus stabilised during inflation guaranteeing

the absence of the n-problem. The corresponding scalar potential 1s then

I
Ve [(f’WX —3gWy) = f" (FW2 — 6gWy W, — 9hW§)]

U
Wy (r )2

With U = 3f* (2gf'g’' — fg* + f*h — f"(g*> + fh)) such that at tree-level” V = ot
c

Then, we divide out analysis in two possible scenarios:
e Non-trivial linear term: g(o) # O.
* Vanishing linear term: g(o) = 0.

WISPs in String
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T At tree level f = 0,2 =0 and h = 1.
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Type IIB string theory compactified on a GY threefold in the presence of fluxes:

172 12
4P etr(y)

dsf+ 1 +

2
dsCY.

ds* = gyndxMdx = [ 1+

9213 /213

The corresponding inter-brane potential 1s given by

Te —~4p(0)cy2/3

V = 2T e~ O23
4
r

Nulpotent superfield framework:

The setup can be studied using non-linear SUSY with a
goldstino superfield X breaking SUSY, a Kaihler

modulus 7 = (T + T) and the inflaton r defining the EFT:
K=-3In|f(0) + X+ X)g(o) — XXh(c)| and W=W,+X Wy(r),
1
where 6 = 7 — s (MKKr)2 , and not 7, 1s the modulus stabilised during inflation guaranteeing

the absence of the n-problem. The corresponding scalar potential 1s then

I
Ve [(f’WX —3gWy) = f" (FW2 — 6gWy W, — 9hW§)]

U
' 2 I > ; Wy (1)
With U = 3f (ng’g’ —fg-+fh—f"(g +fh)) such that at tree-level’ V = Rt
o
Then, we divide out analysis in two possible scenarios: (D3-brane contribution if we identify
Wy with the warp factor).

e Non-trivial linear term: g(o) # 0.
* Vanishing linear term: g(o) = 0.

WISPs in String
Cosmology

T At tree level f = 0,2 =0 and h = 1.




| .INEAR TERM INCLUDED

WISPs in String
Cosmology




| .INEAR TERM INCLUDED
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3 on X such as f=o0, g=g,Inc and h = 1; the

resulting scalar potential 1s a pertect square:
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3.- In this case, the leading order perturbative correction is the one at O(a?), i.c.,

¢
o) =o+ o=
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o

C
For large field values, this can be expanded as V, (@) ~ C, <1 — —i) (power-law with n = 4),
P

% =% 9D, T2
7 and C, = Yot
192\/5(37:)9/4&6 W3 My

where C, =
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Uplifted dS minimum during inflation
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Figure: The parameter choices of this example are @ = 0.994, g = 1/15, Wy =1, Wy, = 107%, T, = 2w and £ = 0.1.

Early and late time potentials
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Figure: The parameters used to generate this plot are ¢ = g, = 0.1, Wy = 1, Wy, = 1073 and T, = 2x, while 6 = 0.994.
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WITHOUT LINEAR TERM
Wx(’” )2

There is no linear dependence of e™*” on X such that V = 2
o

To stabilise the volume mode o, we include logarithmic redefinitions to f(¢) resulting in

: a 5\/§s C

VX gy | L Ino - —
302 Olo6%  4cod? g2 /|

with 7.~ ¢_. and Wy ~ ™% < 1. Then, the inflationary vacuum energy is:

2c [ ]
2 —7
€ &5 . %O @0
V6., ) o~ —2 ~ Wf( which reproduces V. ((r) = 1 — ,
R PET VF T )’

with the volume modulus stabilised by perturbative corrections — no n-problem.
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Figure: The paramelers used to generate this plot are € = g, = 0.1, Wy =1, Wg = 107" and T, = 2z, with 0 = 0.994.
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(CONSISTENCY CONDITIONS

o D3-brane in the throat:

27T MK o) < K2
Mamyior \omin€ M
(47)°0 31 p
* Gravitino mass below warped string scale:
1/4
m W,
32, 8 Mo P < 1 o
Ms,warped 2 Omin
* Dilute flux approximation under control: o,

* Curvature corrections under control: g.M > 1.

Conifold modulus stability: g M* > 46.

> MK.
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Figures: Allowed UV parameter spaces. T he parameters used are & = 0.1 and T, = 2x, with 6 = 0.994.
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[G. Dvali, Q. Shafi and S. Solganik, 2001]
* Following KKLM'T] we introduced warping to obtain a flat potential, but contrary to

them, we stabilised the volume modulus with leading a’ and g, corrections to the action.

* In this way we managed to avoid the n-problem and derived for the first time the inverse

power-law potential instead of the tuned inflection point model (ruled out experimentally).
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“I am just a child who has never grown up. I still keep asking these 'how' and why' questions.

Occaswonally, I find an answer.”™
-S. Hawking

THANK YOU!

Mario Ramos Hamud
Email: mr895@cam.ac.uk
DAMTP | University of Cambridge
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String compactifications

The low energy effective action of string theories in 10d can be organised in a double
expansion: the @’ and g, expansions. The six extra dimensions must be compactified.

After compactification, a requirement that some supersymmetry 1s preserved implies that
the internal manifold 1s a Galabi-Yau manifold with a characteristic shape and volume.

Upon dimensional reduction, this leads to massless (complex) scalars called moduli
which must be stabilised to avoid fifth forces.
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* Region I: out of the domain of parametric control of the EF T (small 77/strong g,).
* Region II: requires extra ingredients in the compactification to get a minimum.

* Region III: runaway region which 1s the only one tully trustable in the EF1.

If the scalar potential has a minimum, 1t 1s generically at s ~ v ~ O(1).
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1-PROBLEM

Consider the Kahler potential
K~ —3In[t— ¢p + ]

when 7 is fixed by non-perturbative effects, ¢¢ induces a correction to the

inflaton potential given by
|%

orlgmal

Vcorrection ~ Cb ¢>

v

original

with V original fixing the Hubble scale during inflation: H7 ~ =

vV

. . . . original
« I'he mass contribution of the inflaton 1s mg% ~

2
73 Hi
% 2
Ve my
« Olow roll parameter:  ~ — ~ "~ 1 = No longer slow-roll inflation!
i

n-problem can be avoided by doing a perturbative stabilisation of the
volume modulus.
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FEXPERIMENTAL DATA

Compatibility with data

We use the Planck data for observational constraints on the amplitude of density
perturbations and the spectral index n,. It can be shown that CMB observations can be
matched at horizon exit around N, = 56 e-foldings before the end of inflation where:

Viop = 1077M%, 9. =107M,, and r~2x107%,

with a tiny tensor-to-scalar ratio r that 1s far from the present observational reach.

The value of the scalar potential at horizon exit can be used to express p in terms of the
other UV parameters — number of free parameters reduced to three: W, g, and K.
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