Tensor force, Equation of states and Particlevibration coupling

Ligang Cao Beijing Normal University

Multifaceted aspects of collaborative research on nuclear structure at UNIMI and INFN-MI

UNIVERSITÀ DEGLI STUDI DI MILANO INFN

Celebrating F.Camera's, G.Colò's and S.Leoni's 60th birthday

they

talking

about?

Ligang Cao Beijing Normal University

Multifaceted aspects of collaborative research on nuclear structure at UNIMI and INFN-MI

UNIVERSITÀ **DEGLI STUDI DI MILANO**

elebrating F.Camera's, G.Colò's and S.Leoni's 60th birthday

Gets to know (2004) and meet (2007) Gianluca

LNS Skyrme effective interaction

Euro-Asian Link

Exoct 07 at Catania

As postdoc, works with Gianluca 2008

- 1. Skyrme tensor force and its applications
- **2. Equation of states of nuclear matter**
- **3. Single-particle states from particle-vibration coupling**
- Totally published 18 papers, 14 papers in the journals and 4 papers contributed the proceedings of the conferences.

1 Skyrme Tensor force and its applications

$$V_{tensor} = \frac{T}{2} \{ [(\sigma_1 \cdot k')(\sigma_2 \cdot k') - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k'^2] \delta(r_1 - r_2) \\ + \delta(r_1 - r_2) [(\sigma_1 \cdot k)(\sigma_2 \cdot k) - \frac{1}{3}(\sigma_1 \cdot \sigma_2)k^2] \} \\ + U[(\sigma_1 \cdot k')\delta(r_1 - r_2)(\sigma_2 \cdot k) - \frac{1}{3}(\sigma_1 \cdot \sigma_2)\delta(r_1 - r_2)(k' \cdot k)]$$

The energy density founctional for centeral exchange and tensor part:

$$H_{sg} = -\frac{1}{16}(t_1x_1 + t_2x_2)J^2 + \frac{1}{16}(t_1 - t_2)[J_p^2 + J_n^2] \qquad \qquad J_q(r)$$

$$H_{tensor} = \frac{5}{24}(T + U)J_nJ_p + \frac{5}{24}U(J_n^2 + J_p^2) \qquad \text{is the spin density}$$

$$\Delta H = \frac{1}{2} \alpha (J_n^2 + J_p^2) + \beta J_n J_p \qquad \alpha = \alpha_c + \alpha_T, \beta = \beta_c + \beta_T$$

$$\alpha_{c} = \frac{1}{8}(t_{1} - t_{2}) - \frac{1}{8}(t_{1}x_{1} + t_{2}x_{2}); \beta_{c} = -\frac{1}{8}(t_{1}x_{1} + t_{2}x_{2})$$
$$\alpha_{T} = \frac{5}{12}U; \beta_{T} = \frac{5}{24}(T + U)$$

G. Colo, et. al. PLB646(2007)227

$$\alpha_{c} = 80.2 MeV fm^{5}$$
$$\beta_{c} = -48.9 MeV fm^{5}$$
$$\alpha_{T} = -170 MeV fm^{5}$$
$$\beta_{T} = 100 MeV fm^{5}$$
$$\alpha = -89.8 MeV fm^{5}$$
$$\beta = 51.1 MeV fm^{5}$$
$$T = 888.0 MeV fm^{5}$$
$$U = -408.0 MeV fm^{5}$$

 $\mathcal{E}_{h9/2}$

We included Skyrme tensor force into RPA to investigate its effects on excited states

PHYSICAL REVIEW C 80, 064304 (2009)

Effects of the tensor force on the multipole response in finite nuclei

PHYSICAL REVIEW C 81, 044302 (2010)

Spin and spin-isospin instabilities and Landau parameters of Skyrme interactions with tensor correlations

Li-Gang Cao (曹李刚),^{1,2,3,4} Gianluca Colò,^{3,4} and Hiroyuki Sagawa⁵ ¹Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, People's Republic of China

PHYSICAL REVIEW C 83, 034324 (2011)

Effects of tensor correlations on low-lying collective states in finite nuclei

Li-Gang Cao (曹李刚),^{1,2,3} H. Sagawa,² and G. Colò^{4,5}

¹Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, People's Republic of China ²Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan ³Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, People's Republic of China

⁴Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy ⁵Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Milano, via Celoria 16, I-20133 Milano, Italy (Received 4 January 2011; revised manuscript received 17 February 2011; published 29 March 2011)

We present a systematic analysis of the effects induced by tensor correlations on low-lying collective states of magic nuclei, by using the fully self-consistent random phase approximation (RPA) model with Skyrme interactions. The role of the tensor correlations is analyzed in detail in the case of quadrupole (2^+) and octupole (3^-) low-lying collective states in ²⁰⁸Pb. The example of ⁴⁰Ca is also discussed, as well as the case of magnetic dipole states (1^+) .

ISGQR:

Cao L. G. et.al., PRC 80, 064304(2009)

ISGQR:

M1 states:

Cao L. G. et.al., PRC 80, 064304(2009)

PHYSICAL REVIEW C 102, 034327 (2020)

Electric and magnetic dipole strength in ^{112,114,116,118,120,124}Sn

S. Bassauer,^{1,*} P. von Neumann-Cosel⁽⁰⁾,^{1,†} P.-G. Reinhard,² A. Tamii,³ S. Adachi,³ C. A. Bertulani,⁴ P. Y. Chan,³
A. D'Alessio,¹ H. Fujioka,⁵ H. Fujita,³ Y. Fujita,³ G. Gey,³ M. Hilcker,¹ T. H. Hoang,³ A. Inoue,³ J. Isaak,^{1,3} C. Iwamoto,⁶
T. Klaus,¹ N. Kobayashi,³ Y. Maeda,⁷ M. Matsuda,⁸ N. Nakatsuka,¹ S. Noji,⁹ H. J. Ong,^{10,3} I. Ou,¹¹ N. Pietralla,¹
V. Yu. Ponomarev,¹ M. S. Reen,¹² A. Richter,¹ M. Singer,¹ G. Steinhilber,¹ T. Sudo,³ Y. Togano,¹³
M. Tsumura,¹⁴ Y. Watanabe,¹⁵ and V. Werner¹
¹Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
²Institut für Theoretische Physik II, Universität Erlangen, D-91058 Erlangen, Germany
³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
⁴Department of Physics and Astronomy, Texas A&M University–Commerce, Commerce, Texas 75429, USA
⁵Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
⁶RIKEN, Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
⁷Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan

Pairing effect:

M1 states:

Sun S. et.al., PRC 109, 014312(2024)

M1 states:

Sun S. et.al., PRC 109, 014312(2024)

	T	U	α	eta	$lpha_C$	eta_C	$lpha_T$	eta_T
SLy5	888.0	-408.0	-89.8	51.1	80.2	-48.9	-170.0	100.0
T11	258.9	-342.8	-60.0	-60.0	82.8	-42.5	-142.8	-17.5
T15	-500.9	173.3	180.0	-60.0	107.8	8.3	72.2	-68.3

2. Equation of states of nuclear matter

$$\frac{E}{A}(\rho, I) \approx E_{SNM}(\rho) + S_2(\rho)I^2$$

$$E_{SNM}(\rho) = E_0 + \frac{K_0}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \frac{Q_0}{6} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^3 + O(4)$$

$$S_{2}(\rho) = E_{sym} + L\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right) + \frac{K_{sym}}{2}\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{2} + \frac{Q_{sym}}{6}\left(\frac{\rho - \rho_{0}}{3\rho_{0}}\right)^{3} + O(4)$$

 $K_{0} = 9\rho_{0}^{2} \frac{\partial^{2} E_{SNM}(\rho)}{\partial \rho^{2}} \bigg|_{\rho = \rho_{0}}$ $L = 3\rho_{0} \frac{\partial S_{2}(\rho)}{\partial \rho} \bigg|_{\rho = \rho_{0}}$

Nuclear structure Heavy ion collision Physics of neutron star PHYSICAL REVIEW LETTERS

week ending 6 MARCH 2009

Search for the Pygmy Dipole Resonance in ⁶⁸Ni at 600 MeV/nucleon

O. Wieland,¹ A. Bracco,^{1,2} F. Camera,^{1,2} G. Benzoni,¹ N. Blasi,¹ S. Brambilla,¹ F. C. L. Crespi,^{1,2} S. Leoni,^{1,2} B. Million,¹ R. Nicolini,^{1,2} A. Maj,³ P. Bednarczyk,³ J. Grebosz,³ M. Kmiecik,³ W. Meczynski,³ J. Styczen,³ T. Aumann,⁴ A. Banu,⁴ T. Beck,⁴ F. Becker,⁴ L. Caceres,^{4,*} P. Doornenbal,^{4,†} H. Emling,⁴ J. Gerl,⁴ H. Geissel,⁴ M. Gorska,⁴ O. Kavatsyuk,⁴ M. Kavatsyuk,⁴ I. Kojouharov,⁴ N. Kurz,⁴ R. Lozeva,⁴ N. Saito,⁴ T. Saito,⁴ H. Schaffner,⁴ H. J. Wollersheim,³ J. Jolie,⁵ P. Reiter,⁵ N. Warr,⁵ G. deAngelis,⁶ A. Gadea,⁶ D. Napoli,⁶ S. Lenzi,^{7,8} S. Lunardi,^{7,8} D. Balabanski,^{9,10} G. LoBianco,^{9,10} C. Petrache,^{9,‡} A. Saltarelli,^{9,10} M. Castoldi,¹¹ A. Zucchiatti,¹¹ J. Walker,¹² and A. Bürger^{13,§} 10 da/dE [mb/MeV] GDR PDR Total 0.1 8 10 12 14 16 18 20 E_v[MeV] 2024/10/18

The Pygmy dipole states were also found in 20,22O and 130,132Sn

2024/10/18

Andrea Carbone Gianluca Colo, Angela Bracco, Li-**Gang Cao, Pier** Francesco **Bortignon, Franco** Camera, and **Oliver Wieland**, **Phys. Rev. C 81,** 041301(R) (2010).

Anti-analog giant dipole resonance and the symmetry energy

Spin-isospin GRs

_

1) Spin dipole, Yako, PRC74, 051303(R) (2006)

$$S_{-} - S_{+} = \frac{9}{4\pi} (N \langle r^{2} \rangle_{n} - Z \langle r^{2} \rangle_{p}),$$

2) In Krmpotic's work, they claimed that the excitation energy of the AGDR is sensitive to the neutron skin thickness.

F. Krmpotic, K. Nakayama, and A. Pio Galeao, Nucl. Phys. A 399, 478 (1983). 2024/10/18

Method	Ref.	Date	$\Delta R_{np}(\text{fm})$
antiproton absorption	[31]	2001	0.180 ± 0.030
(α, α') IVGDR	[69]	2004	0.120 ± 0.070
PDR	[43]	2010	0.194 ± 0.024
$(\vec{p},\vec{p'})$	[35]	2011	0.156 ± 0.025
α_D	[41]	2012	0.168 ± 0.022
parity violation	[29]	2012	0.330 ± 0.170
AGDR from Exp1	[57]	2013	0.216 ± 0.048
AGDR from Exp2	[54]	2013	0.190 ± 0.028
(γ, π^0)	[1]	2014	0.150 ± 0.030
AGDR from Exp1	present	2015	0.254 ± 0.062
AGDR from Exp2	present	2015	0.218 ± 0.015

 $R_np = 0.236 \pm 0.018$ fm $J = 33.2 \pm 1.0$ MeV $L = 97.3 \pm 11.2$ MeV

2024/10/18

3. Single-particle states from particle-vibration coupling

limitations of EDFT

- Widths of GRs.
- Single-particle states and their spectroscopic factors

Our fully self-consistent implementation

The continuum is discretized. The basis must be large due to the zerorange character of the force. Parameters: R, E_C.

The energy-weighted sum rule should be equal to the doublecommutator value: well fulfilled !

G. Colò, L. Cao, N. Van Giai, L. Capelli Comp. Phys. Comm. 184, 142 (2013).

Percentages m₁(RPA)/m₁(DC) [%]

FIG. 1. The four diagrams associated with the single-nucleon self-energy. See the text for details.

$$\Sigma_{i}(\omega) = \frac{1}{2j_{i}+1} \left(\sum_{nL, p>F} \frac{|\langle i||V||p, nL \rangle|^{2}}{\omega - \varepsilon_{p} - \omega_{nL} + i\eta} + \sum_{nL, h < F} \frac{|\langle i||V||h, nL \rangle|^{2}}{\omega - \varepsilon_{h} + \omega_{nL} - i\eta} \right),$$

2024/10/18

Spectroscopic factor

$$S_{\alpha}^{\lambda} = \left(1 - \frac{\partial \Sigma_{\alpha}}{\partial \varepsilon}\right)_{\varepsilon = \varepsilon_{\alpha}^{\lambda}}^{-1}$$

TABLE IV: The energies and spectroscopic factors of the single-particle states in 208 Pb in various approximations. The results are obtained by using SLy5 and T44 parameter sets. The experimental data are taken from Ref.[31, 32].

		$_{\mathrm{HF}}$	\mathbf{pvc}		pvc		pvc			Spectroscopic		
			$\operatorname{central}$		central + S.O.		full			fac	factors	
		$\varepsilon^{(0)}$	$\Delta \varepsilon_i$	ε_i	$\Delta \varepsilon_i$	ε_i	$\Delta \varepsilon_i$	ε_i	ε_i^{exp}	S_i^{th}	S_i^{exp}	
T44	$3d_{3/2}$	0.20	-0.55	-0.35	-0.44	-0.24	-0.44	-0.24	-1.40	0.895	1.09	
	$2g_{7/2}$	0.14	-0.85	-0.71	-0.53	-0.39	-0.61	-0.47	-1.44	0.832	1.05	
	$4s_{1/2}$	-0.35	-0.48	-0.83	-0.50	-0.85	-0.47	-0.82	-1.90	0.896	0.98	
	$3d_{5/2}$	-0.88	-0.72	-1.60	-0.81	-1.69	-0.81	-1.69	-2.37	0.855	0.98	
	$1j_{15/2}$	-0.30	-0.87	-1.17	-1.80	-2.10	-1.77	-2.07	-2.51	0.583	0.58	
	$1i_{11/2}$	-2.19	-0.39	-2.58	-0.51	-2.70	-0.57	-2.76	-3.16	0.884	0.86	
	$2g_{9/2}$	-3.28	-0.52	-3.80	-0.69	-3.97	-0.68	-3.96	-3.94	0.877	0.83	
	$3p_{1/2}$	-7.91	-0.08	-7.99	0.04	-7.87	0.03	-7.88	-7.37	0.905	0.90	
	$2f_{5/2}$	-8.92	0.03	-8.89	0.19	-8.72	0.18	-8.74	-7.94	0.888	0.60	
	$3p_{3/2}$	-9.14	0.11	-9.03	0.19	-8.95	0.21	-8.93	-8.26	0.844	0.88	
	$1i_{13/2}$	-9.18	0.17	-9.01	-0.01	-9.19	0.01	-9.17	-9.24	0.903	0.91	
	$2f_{7/2}$	-12.10	0.54	-11.56	0.49	-11.61	0.68	-11.42	-9.81	0.580	0.95	
	$1h_{9/2}$	-13.14	0.13	-13.01	0.43	-12.71	0.44	-12.70	-11.40	0.831	0.98	

Cao LG, et.al., Phys.Rev. C89, 044314 (2014)

Collaborators

- G. Colo, Milano University and INFN-mi
- P. F. Bortignon, Milano University and INFN-mi
- H. Sagawa, Aizu University and Riken
- X. Roca-Maza, Milano University and INFN-mi
- L. Sciacchitano, Milano University
- S. Sun BNU
- F. S. Zhang BNU

Take this opportunity to give my deeply thanks to Gianluca, Franco and Silvia, happy 60th birthday !!!

