

The group at the Niels Bohr Institute

cnrs y

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Université de Paris

Reflections on the science and impact of Bent Herskind

S. Leoni, A. Maj, M. A. Riley, J. Simpson, E. Vigezzi and J. N. Wilson Eur. Phys. J. A 60: 206 (2024)

Université de Paris

Triaxial Wobbling Hyperdeformation **Nuclear Fission**

iCLab

The discovery of triaxial wobbling

cnrs

FACULTÉ

D'ORSAY

DES SCIENCES

universite

Université de Paris

FIG. 5. Experimental and calculated electromagnetic properties of the connecting transitions.

*See Also:

Consequences of broken axial symmetry in heavy nuclei—an overview of the situation in the valley of stability

E. Grosse, A. Junghans and J.N. Wilson, Phys. Scr. 94 014008 (2019)

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Université de Paris

Hyperdeformation

Hyperdeforr

Hyperdeformation: Tantilsing theoretical

CNIS UNIVERSILE DES SCIENCES PARIS-SACLAY D'ORSAY

Université de Paris

000000000000

Prediction of hyperdeformed nuclear states at very high spins

J.Dudek, T.Werner, L.L.Riedinger, Phys Lett B 211 252 (1988)

"Discovery" of hyperdeformation (1)

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

First Evidence for the Hyperdeformed Nuclear Shape at High Angular Momentum, A. Galindo-Uribarri et al. Phys. Rev. Lett. 71 231 (1993)

Hopes for Hyperdeformation

W.R. Phillips, Nature News and Views (1994)

It is too early for the cautious to be sure that this interpretation is correct. The discrete transitions within the hyperdeformed band have not yet been clearly observed, and the pathway from the observation of ridge structures to the deduction of band deformations is strewn with pitfalls. Yet the first indications⁷ of superdeformation, later substantiated³, came from experiments much like this. Those designing further experiments to determine the shapes of nuclei under extreme conditions should be encouraged by the results.

W. R. Phillips is in the Department of Physics, Nuclear Group, Schuster Laboratory, University of Manchester, Manchester

"Discovery" of hyperdeformation (2)

cnrs DES SCIENCES université

Université de Paris

des 2 Infinis

Evidence for hyperdeformation in ¹⁴⁷Gd

D. Lafosse et al., Phys. Rev. Lett., 74 5186 (1995)

Gadolinium peanuts

The next few months will see a flurry of activity, as groups in the United States and Europe attempt to answer these questions and show whether these sequences are indeed decays of hyperdeformed, peanutshaped nuclei. Once again a new generation of powerful spectrometers is opening up new vistas in nuclear structure physics.

P.J. Twin, Nature News and Views (1995)

Search for hyperdeformation in ¹⁶⁸Yb

UNIVERSITE PARIS-SACLAY cnrs

Université de Paris

It's disappeared 😕

PHYSICAL REVIEW C

VOLUME 54, NUMBER 4

OCTOBER 1996

FACULTÉ

D'ORSAY

Search for hyperdeformation in ^{146,147}Gd

D. R. LaFosse,¹ D. G. Sarantites,¹ C. Baktash,² S. Asztalos,³ M. J. Brinkman,² B. Cederwall,⁴ R. M. Clark,³ M. Devlin,¹ P. Fallon,³ C. J. Gross,² H.-Q. Jin,² I. Y. Lee,³ F. Lerma,¹ A. O. Macchiavelli,³ R. MacLeod,³ D. Rudolph,² D. W. Stracener,² and C.-H. Yu² ¹Department of Chemistry, Washington University, St. Louis, Missouri 63130 ²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ⁴Royal Institute of Technology, Stockholm, Sweden (Received 12 February 1996)

A search was undertaken to look for evidence of hyperdeformation in ^{146,147}Gd. Three experiments employing Gammasphere for gamma-ray detection coupled with the Microball for channel selection via charged particle detection were carried out with increasing detection sensitivity and statistics. No definitive evidence for band structures that could be assigned to hyperdeformation could be found. Candidates previously reported are shown not to have properties consistent with a band structure. [S0556-2813(96)00210-5]

Nuclear Fission

Gamma-ray spectroscopy of fission fragments with state-of-the-art techniques S. Leoni, C. Michelagnoli, J.N. Wilson Riv. Nuovo Cimento Soc. Ital. Fis. 45, 461 (2022)

> Angular Momentum Generation in Nuclear Fission J.N. Wilson + the nu-Ball collaboration, Nature 590 566 (2021)

The v-ball spectrometer @ ALTO

CNIS UNIVERSITE PARIS-SACLAY Université de Paris

Laboratoire de Physique des 2 Infinis

Innovations

- ✓ Hybrid Spectrometer (Ge/BGO/LaBr3) high resolution, high efficiency
- ✓ Coupling with the LICORNE directional neutron source
- ✓ Calorimetry for reaction studies/selection
- ✓ Fully digital, 200 channels, including BGO
- ✓ Modes Triggered or Triggerlesss

v-ball fission experiments

76 researchers from 16 countries 7 weeks of beam time in 2018

24 Clover Ge + BGO 10 Coaxial Ge + BGO 20 LaBr3 or 36 PARIS phoswich

DES SCIENCES

Radioactive ²³²Th + ²³⁸U targets made at IJC Lab

LICORNE/v-ball coupling principle

cnrs

FACULTÉ universite DES SCIENCES D'ORSAY

Université de Paris

RESULTS: Average spin <I> vs fragment mass (A) cnrs

Laboratoire de Physique des 2 Infinis

- 30 even-even nuclei measured for each system •
- Definitive saw-tooth patterns ٠
- Slope and curvature. Heavy peak has higher spins •

universitė

Remarks

- Armbruster, Pleasonton, were not wrong!
- No notable dependence on the partner nucleus e.g.

 140 Xe + 90 Kr ¹⁴⁰Xe + ⁹⁶Sr 25% difference in mass ¹⁴⁰Xe + ¹¹²Ru

Each nucleus does not care who it emerged with!

Certain partners have large asymmetries in <I> e.g. ¹⁵⁰Ce has double the <I> of ⁸⁶Se

Highly asymmetric distribution

J.N. Wilson et al. Nature 590 566 (2021)

Université de Paris

DES SCIENCES

Phys. Rev. C 109, 034615 (2024)

⁹⁶Sr partner γ's with increasing ¹⁴⁰Xe spin Lab conditions

Laboratoire de Physique des 2 Infinis

Increasing spin demanded in ¹⁴⁰Xe

UNIVERSITE PARIS-SACLAY

cnrs

FACULTÉ DES SCIENCES D'ORSAY

Université de Paris

J.N. Wilson et al. Nature 590 566 (2021)

Silvia

Gianluca

Franco