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Exotic Modes of Excitation Far From Stability

Characteristic ground-state properties (weak binding of the outermost nucleons, coupling between bound 
states and the particle continuum, nuclei with very diffuse neutron densities, formation of neutron skin and 
halo structures) have a pronounced effect on the multipole response of unstable nuclei. 

The enhancement of the low-lying multipole strength is a general phenomenon in systems characterized by 
small values of particle (e.g. neutrons) separation energies. 
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Abstract

We review recent studies of the evolution of collective excitations in atomic nuclei far from
the valley of β-stability. Collective degrees of freedom govern essential aspects of nuclear
structure, and for several decades the study of collective modes such as rotations and vibrations
has played a vital role in our understanding of complex properties of nuclei. The multipole
response of unstable nuclei and the possible occurrence of new exotic modes of excitation
in weakly bound nuclear systems, present a rapidly growing field of research, but only few
experimental studies of these phenomena have been reported so far. Valuable data on the
evolution of the low-energy dipole response in unstable neutron-rich nuclei have been gathered
in recent experiments, but the available information is not sufficient to determine the nature of
observed excitations. Even in stable nuclei various modes of giant collective oscillations had
been predicted by theory years before they were observed, and for that reason it is very important
to perform detailed theoretical studies of the evolution of collective modes of excitation in
nuclei far from stability. We therefore discuss the modern theoretical tools that have been
developed in recent years for the description of collective excitations in weakly bound nuclei.
The review focuses on the applications of these models to studies of the evolution of low-
energy dipole modes from stable nuclei to systems near the particle emission threshold, to
analyses of various isoscalar modes, those for which data are already available, as well as
those that could be observed in future experiments, to a description of charge-exchange modes
and their evolution in neutron-rich nuclei, and to studies of the role of exotic low-energy modes
in astrophysical processes.

(Some figures in this article are in colour only in the electronic version)
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Figure 9. Evolution of the isovector dipole strength distribution in oxygen isotopes, calculated
within the RHB + RQRPA model using the DD-ME2 effective interaction.

force as the residual interaction in the ph channel, and a density-dependent δ-force in the
pairing channel, has also been employed to analyse the low-energy modes in oxygen isotopes.
Pairing is not very strong in these isotopes, in particular the pairing gap is considerably below
the empirical 12/

√
A estimate in 22,24O. However, since the residual pairing interaction in

QRPA generates dynamical correlation effects on the response function through pair density
fluctuations, and therefore provides a contribution to the low-lying multipole strength, it is
important to include a consistent treatment of pairing correlations within the HFB + QRPA
framework. Moreover, the energy weighted sum rules are fulfilled only if the pairing interaction
is consistently included both in the solution for the stationary ground state, and in the dynamical
linear response [30,37]. In [37] the self-consistent RHB+RQRPA has been applied in the study
of multipole excitations of neutron-rich oxygen isotopes and, in particular, in the analysis of
the evolution of the low-lying isovector dipole strength.

The overall picture emerging from all these calculations is that the onset of dipole strength
in the low-energy region is caused by non-resonant independent single-particle excitations
of the last bound neutrons. This is similar to the case of light nuclei discussed in the
previous subsection. The difference, however, is that for the oxygen isotopes the neutron
separation energies are larger, i.e. 3.61 MeV for 24O, and thus the low-lying strength is much
less pronounced than for the threshold effect in light systems.

In order to illustrate the evolution of low-lying dipole strength along the chain of neutron-
rich oxygen isotopes, we show the results of the self-consistent RHB+RQRPA calculation [37],
based on the density-dependent effective interaction DD-ME2 [28] plus the Gogny D1S force in
the pairing channel. The strength distributions associated with the dipole operator equation (66)
are displayed in figure 9. With the increase of the number of neutrons one finds a pronounced
fragmentation of the dipole strength, and low-lying strength appears below 15 MeV. The
centroid energy of the low-lying E1 states is lowered with the increase of neutron excess,
whereas the total strength is enhanced.

The electric dipole strength distributions in 18O, 20O and 22O have also been analysed
in calculations which go beyond the mean-field level by including the coupling of single-
quasiparticle states to vibrational modes [92]. By employing the QRPA-PC model with up to
four-quasiparticle configurations (two uncorrelated quasiparticles plus a collective phonon), it
has been shown that the calculated total photoabsorption cross section below 15 MeV is in very
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Figure 10. Total photoabsorbtion cross section for the isotopes 18,20,22O, calculated using the full
QRPA plus phonon coupling [92]. Reprinted with permission from Elsevier, copyright 2001.

good agreement with experiment. While the simple QRPA analyses predict values which are
systematically below the data, the coupling with phonons increases the cross section in the low-
energy region. Because of the repulsion between the simple two-quasiparticle states and the
complex configurations that include a phonon, the former are shifted to lower energy and this
increases the total QRPA strength in the low-energy region. The QRPA-PC photoabsorption
cross sections are shown in figure 10. We note that the calculation predicts the spreading
widths, both for the low-energy dipole strength and for the giant dipole resonance.

The QRPA-PC analysis of [92] is self-consistent, in the sense that the only input is the
Skyrme force which determines the ground state, and no further adjustment of parameters is
necessary in the calculation of the response function. A more phenomenological model which
also emphasizes the role of phonon coupling is the quasiparticle representation of the phonon
damping model [93]. In [50] the time-dependent density-matrix (TDDM) model, which is an
extension of the time-dependent Hartree–Fock theory beyond the mean-field level, was used
to calculate the isovector dipole strength functions of the even-A isotopes 18–24O. By adjusting
the strength of the residual interaction, the observed isotopic dependence of low-lying dipole
strength was reproduced.

In table 1 the predictions of several models for the low-lying E1 strength in 18–24O are
summarized and compared with data [85, 94]. The sum of the energy-weighted E1 transition
strength below 15 MeV is given in units of the classical TRK sum rule. Even though all models
agree on the overall effect of the neutron excess on the E1 transition strength, significant
differences can be noted in isotopes close to the drip-line. In particular, the inclusion of
particle–vibration coupling brings the results in closer agreement with experiment.

The role of dynamical pairing correlations is illustrated in the example of 22O. The
RHB+RQRPA isovector dipole transition strength functions are plotted in the left panel
of figure 11 for three different calculations: (a) the RMF+RRPA calculation without
pairing, (b) pairing correlations included in the RHB calculation of the ground state,
but not in the RQRPA residual interaction (no dynamical pairing) and (c) the fully self-
consistent RHB+RQRPA calculation. The residual pairing interaction in the RQRPA generates
pronounced dynamical correlation effects on the responses through pair density fluctuations.
Moreover, the energy-weighted sum rules are only satisfied if the pairing interaction is

Isovector dipole strength → RHB + RQRPA.  QRPA plus phonon coupling.

All models agree on the overall effect of the neutron excess on the E1 transition strength. The inclusion of 
particle–vibration coupling brings the results in closer agreement with experiment.

… dipole strength in the low-energy region is caused by non-resonant single-particle excitations of the last 
bound neutrons. 



Pygmy dipole resonances in heavier neutron-rich nuclei

726 N Paar et al

5 10 15 20 25 30 35
E [MeV]

2

4

6

8

10

R
[e

2 fm
2 /M

eV
]

-0.2

0

0.2

r2 δρ
[f

m
-1

]

0 2 4 6 8

r [fm]

0.001

0.01

0.1

ρ[
fm

-3
]

neutrons
protons

0 2 4 6 8 10 12
r [fm]

-0.2

0

0.2

r2
δρ

[f
m

-1
]

E=15.3 MeV

E=7.8 MeV

132
Sn

RRPA (DD-ME2)

Figure 13. The RRPA dipole strength distribution in 132Sn, calculated with the DD-ME2 effective
interaction. In the insertions we plot the ground-state proton and neutron density profiles, and the
proton and neutron transition densities for the peaks at 7.8 and 15.3 MeV excitation energy.

and its spreading into the low-energy region. Fully consistent R(Q)RPA calculations have
shown that with the increase in the number of neutrons along an isotopic chain, a relatively
strong E1 peak appears below 10 MeV. The dynamics of this peak is very different from that
of the isovector giant dipole resonance (IV GDR) [37,95]. This is illustrated in figure 13 with
the example of 132Sn, where we plot the RRPA strength distribution which corresponds to
the isovector dipole operator, and is calculated with the DD-ME2 effective interaction [28].
In the inserted panels we display the neutron and proton ground-state density distributions,
and the neutron and proton transition densities for the low-lying state at 7.8 MeV, and for the
IV GDR at 15.3 MeV. For the main peak at 15.3 MeV the transition densities display a radial
dependence which is characteristic for the isovector dipole mode (IV GDR): the proton and
neutron densities oscillate with opposite phases. The dynamics of the state at 7.8 MeV is
completely different: the proton and neutron transition densities are in phase in the bulk of the
nucleus, whereas only neutron excitations contribute to the transition density in the surface
region. Thus the low-lying pygmy state does not belong to statistical E1 excitations sitting on
the tail of the IV GDR, but rather represents a new mode—the PDR: the neutron skin oscillates
against the core. The neutron skin, i.e. the difference between the neutron and proton density
distributions in the ground state (shown in the right panel in figure 13) basically determines
the properties of the PDR [134]. Therefore, for a quantitative description of PDR dynamics it
is essential to use effective interactions that reproduce available data on the neutron skin. This
is the case, for instance, for the relativistic density-dependent interactions DD-ME1 [27] and
DD-ME2 [28], which have been specifically designed to reproduce the differences between
the rms-radii of neutron and proton density distributions.

In light nuclei the low-energy dipole strength predominantly originates from non-resonant
independent single particle excitations of the loosely bound neutrons. However, the structure of
the low-lying strength changes with mass. As it has been shown in the RRPA analysis of [95],
in heavier nuclei some of the low-lying dipole states display a more distributed structure of
the RRPA amplitudes. Among several peaks characterized by single particle transitions, a
single collective dipole state is identified below 10 MeV and its RRPA amplitude presents a
coherent superposition of many neutron particle–hole configurations. For instance, in the case

A single collective dipole state below 10 MeV. Its RRPA 
amplitude presents a coherent superposition of 
neutron p–h configurations.
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Figure 14. Photoabsorption cross section for 132Sn, calculated with the RPA and RPA-PC models.
The effective interaction is Skyrme SIII. Reprinted from [153] with permission from Elsevier,
copyright 2004.

GDR and for the low-lying peak at 9.7 MeV, are similar to those calculated with the relativistic
RPA (see figure 13) the analysis of the structure of RPA (RPA-PC) amplitudes shows that
none of the peaks below 10 MeV contain contributions of more than two or three different
neutron particle–hole (ph) configurations. Predominantly these peaks correspond to just a
single-neutron transition, and each of them exhausts less than 0.5% of the energy-weighted
sum rule.

Low-lying E1 excitations in neutron-rich Sn isotopes have also been studied in the
quasiparticle phonon model [134], in a model space that included up to three-phonon
configurations built from a basis of QRPA states, and with separable multipole–multipole
residual interactions. The single-nucleon spectra were calculated for a Woods–Saxon potential
with adjustable parameters. Empirical couplings were used for the QPM residual interactions.
In the QPM spectra for 120–132Sn the low-energy dipole strength was found concentrated in
a narrow energy interval such that the PDR could be identified. It was shown that, despite
significant multi-phonon contributions to the mean-energy and transition strength, the PDR
states basically retain their one-phonon character.

Because of its relatively large neutron excess, the stable nucleus 208Pb has also been
investigated for a possible occurrence of pygmy dipole resonant states. Experimental evidence
has been reported in elastic photon [154] and photoneutron scattering [155] and in electron
scattering [156]: pronounced E1 strength has been observed in the energy region between 9
and 11 MeV, several MeV below the IV GDR in 208Pb. On the theoretical side, one of the first
microscopic analyses was performed in the Hartree–Fock plus RPA model based on the Skyrme
interaction SGII [157]. Two pronounced peaks were calculated at 8.7 and 9.5 MeV, which
appeared as likely candidates for the PDR. In a recent self-consistent relativistic RPA study
based on the NL3 effective interaction, a pronounced low-energy dipole peak was calculated at
7.29 MeV [128]. The structure of the RRPA amplitude, the corresponding transition densities
and velocity fields indicate that this state can be interpreted as a collective PDR mode. The
RRPA prediction for the PDR state has been confirmed in a subsequent (γ , γ ′) experiment,
which disclosed a resonance-like structure centred at 7.37 MeV, approximately at the neutron
emission threshold [133].

RPA-PC → none of the peaks below 10 MeV contain 
contributions of more than two or three different 
neutron particle–hole (ph) configurations.

The inclusion of particle–vibration coupling in (Q)RPA improves the agreement between the calculated and empirical 
widths of the GDR structures, and also has a pronounced effect on the low-lying E1 strength. 
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FIG. 1. (Color online) Proton (solid) and neutron (dashed) den-
sities for three isotopes of Sn calculated with both SGII and SLY4
interactions.

coming out with an interaction widely used, also by us, and
adjusted also on the properties of excited states (SGII). They
are both representative of acceptable Skyrme interactions.

First, we solve the Hartree-Fock equations and express
the single-particle wave functions as superpositions of 16
harmonic oscillator ones. In Fig. 1, we show the proton and
neutron densities for the three isotopes 100Sn, 120Sn, and 132Sn
and for the two considered interactions. They are multiplied
by r2 to make more evident the presence of the neutron
skin. The results do not depend appreciably on the used
interaction.

For the most neutron rich isotope, we see that the neutron
density extends to larger radial values with respect to the
proton density, while the opposite happens for 100Sn. This
is quantified in the difference between the neutron and proton
rms radii (see Table I). The values obtained with the SLY4,
very similar to those calculated in Ref. [4], are slightly larger
than the ones with the SGII. This is because the formation
of the skin is related to the value of the nuclear symmetry
energy [7,15,16], which is 32 MeV [14] and 26.8 MeV [13] for
the SLY4 and SGII, respectively. A clear connection of the low
energy B(E1) strength and the thickness of the neutron skin
has been shown and its effect on the transition densities amply
discussed in Refs. [4,5,17,18]. Below we will present, for
132Sn, a comparison between the transition density associated
with the low-lying dipole state and that of the giant dipole
resonance (GDR). As we will see, this comparison clearly
indicates the different nature of the oscillations from which

TABLE I. Difference δr (in fm) between
the neutron and proton rms radii.

SGII SLY4

100Sn −0.086 −0.100
120Sn 0.119 0.142
132Sn 0.198 0.221

FIG. 2. (Color online) Isoscalar strength distributions for
monopole states for tin isotopes calculated with the SGII and SLY4
interactions. The solid curves represent dB(E0)/dE in units of
(e2 fm4 MeV−1) as obtained by adopting a smoothing procedure
described in the text.

the two peaks originate and the fact that, indeed, the low-lying
one can be identified with the pygmy dipole resonance (PDR).
An exhaustive discussion of the evolution of the PDR and its
identification can be found in Ref. [4], where the results for
several Z = 50 isotopes and N = 82 isotones, within QRPA,
are presented and analyzed. Other systematic studies on Sn
isotopes have been reported also in Refs. [19,20].

In Figs. 2–5, we show a compendium of the RPA strength
distributions for all the considered isotopes and the two Skyrme
forces, for the natural parity multipolarities from J π = 0+ to
J π = 3−. The bars correspond to the RPA calculations, while
the continuous lines are generated by a smoothing procedure
using a Lorentzian with a 1 MeV width. The continuous lines
are drawn only to easily see where the major strength is
located. The monopole states are not excited by the Coulomb
interaction. As shown in Ref. [21], their presence is important
in generating anharmonicities. Their strength distribution does
not vary significantly going from one isotope to the other. In

FIG. 3. (Color online) Same as Fig. 2, but for isovector strength
distributions for dipole states. The solid curves are dB(E1)/dE in
units of (e2 fm2 MeV−1).
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68Ni, 132Sn, and 208Pb. It has been shown that both the isoscalar
and the isovector strength functions display a low-energy peak
that is enhanced and is shifted to higher excitation energies
with increasing values in the slope of the symmetry energy
at saturation. The degree of collectivity associated with the
RPA state(s) that contribute to this peak differs in the isoscalar
and isovector channels. Much more collectivity in the PDS is
predicted in the response to the isoscalar dipole operator.

In this paper, we perform an analysis similar to that of
Ref. [28] but by using a more systematic set of effective nuclear
interactions. Namely, to analyze the model dependence of
the predicted PDS, Roca-Maza et al. employed three different
Skyrme parameter sets: SGII, SLy5, and SkI3. These interac-
tions span a broad range of values of the slope of the nuclear
symmetry energy at saturation, but they also differ in other
characteristics in a nonsystematic way. A consistent set of
effective interactions was used by Piekarewicz in Ref. [43] to
analyze the distribution of the PDS but only for 68Ni and only
in the isovector channel.

II. THEORETICAL FRAMEWORK

The present analysis employs the fully self-consistent
relativistic random-phase approximation (RRPA) based on
the framework of relativistic energy density functionals [55].
In the relativistic mean-field (RMF) + RPA model, effective
interactions are implemented in a fully consistent way:
Effective Lagrangians with density-dependent meson-nucleon
couplings are employed [56,57], and the same interactions are
used both in the RMF equations that determine the ground
state and in the matrix equations of the RRPA. The full set
of RRPA equations is solved by diagonalization. The results
are excitation energies Eλ and the corresponding forward- and
backward-going amplitudes Xλ and Y λ, respectively, that are
used to evaluate the reduced transition probability from an
excited state |Jλ〉 to the ground state,

BT (EJ ) = 1
2Ji + 1

∣∣∣∣
∑

µµ′

{
Xλ,J

µµ′

〈
µ

∥∥Q̂T
J

∥∥µ′〉

+(−1)jµ−jµ′+J Y λ,J
µµ′

〈
µ′∥∥Q̂T

J

∥∥µ
〉}∣∣∣∣

2

, (1)

where µ and µ′ denote single-nucleon states. Discrete spectra
are averaged with a Lorentzian distribution of arbitrary width
(1.5 MeV in the present paper). The electric E1 response is
calculated for the isovector dipole operator,

Q̂T =1
1µ = N

N + Z

Z∑

p=1

rpY1µ(r̂p) − Z

N + Z

N∑

n=1

rnY1µ(r̂n), (2)

and the isoscalar dipole operator,

Q̂T =0
1µ =

A∑

i=1

r3
i Y1µ(r̂i) − η

A∑

i=1

riY1µ(r̂i). (3)

The inclusion of the second term in the isoscalar operator
Eq. (3) with η = 5〈r2〉/3 ensures that the corresponding
strength distribution does not contain spurious components

associated with the center-of-mass motion [58]. The strength
function reads

S(E) =
∑

ν

∣∣〈ν
∥∥Q̂T

J

∥∥0
〉∣∣2

δ(E − Eν). (4)

Eν is the energy of the RPA state |ν〉, and the moments of the
strength distribution are defined as

mk =
∫

dE EkS(E) =
∑

ν

Ek
ν

∣∣〈ν
∥∥Q̂T

J

∥∥0
〉∣∣2

. (5)

In the following, we analyze the occurrence and structure
of the PDSs in the isovector and isoscalar dipole responses of
68Ni, 132Sn, and 208Pb in relation to the density dependence of
the symmetry energy. In linear order with respect to the nuclear
matter density ρ, the symmetry energy S(ρ) is determined by
its value at saturation density S(ρ0) ≡ a4 and by the derivative
at saturation density,

S ′(ρ)|ρ=ρ0 ≡ L

3ρ0
, (6)

and this relation defines the “slope” parameter L. By using
data on the percentage of the EWSR associated with the PDSs
in 68Ni [15] and 132Sn [9], Carbone et al. [23] constrained
the value of the slope parameter L = 64.8 ± 15.7MeV in
accordance with values previously determined with different
types of analyses and/or other methods based on nuclear
structure and heavy-ion experiments. Here, we employ the
framework of relativistic energy density functionals rep-
resented by effective Lagrangians with density-dependent
meson-nucleon vertex functions. The parameters of the very
successful effective interactions DD-ME1 [56] and DD-ME2
[57], in particular, were adjusted simultaneously to empirical
properties of symmetric and asymmetric nuclear matter and
to binding energies and charge radii of 12 spherical nuclei.
Data on excitation energies of isoscalar (IS) giant monopole
resonances and isovector dipole giant resonances (IVGDRs)
were also used to determine the compressibility modulus
and asymmetry energy at saturation as well as available
data on differences between neutron and proton radii in
Sn isotopes and 208Pb. Numerous calculations have shown
that these interactions provide accurate results for ground-
state properties of spherical and deformed nuclei as well as
excitation energies of giant resonances. Pertinent to the present
analysis, the RRPA with the DD-ME2 effective interaction
predicts the dipole polarizability,

αD = 8π

9
e2m−1 (7)

(directly proportional to the inverse energy-weighted moment
m−1) for 208Pb: 20.8 fm3 in very good agreement with the
recently measured value αD = (20.1 ± 0.6) fm3 [20].

III. RESULTS

In an earlier paper [59], we used the RRPA with density-
dependent meson-nucleon effective interactions to provide a
microscopic estimate of the nuclear matter compressibility and
symmetry energy in relativistic mean-field models. Starting
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In the relativistic mean-field (RMF) + RPA model, effective
interactions are implemented in a fully consistent way:
Effective Lagrangians with density-dependent meson-nucleon
couplings are employed [56,57], and the same interactions are
used both in the RMF equations that determine the ground
state and in the matrix equations of the RRPA. The full set
of RRPA equations is solved by diagonalization. The results
are excitation energies Eλ and the corresponding forward- and
backward-going amplitudes Xλ and Y λ, respectively, that are
used to evaluate the reduced transition probability from an
excited state |Jλ〉 to the ground state,

BT (EJ ) = 1
2Ji + 1

∣∣∣∣
∑

µµ′

{
Xλ,J

µµ′

〈
µ

∥∥Q̂T
J

∥∥µ′〉

+(−1)jµ−jµ′+J Y λ,J
µµ′

〈
µ′∥∥Q̂T

J

∥∥µ
〉}∣∣∣∣

2

, (1)

where µ and µ′ denote single-nucleon states. Discrete spectra
are averaged with a Lorentzian distribution of arbitrary width
(1.5 MeV in the present paper). The electric E1 response is
calculated for the isovector dipole operator,

Q̂T =1
1µ = N

N + Z

Z∑

p=1

rpY1µ(r̂p) − Z

N + Z

N∑

n=1

rnY1µ(r̂n), (2)

and the isoscalar dipole operator,

Q̂T =0
1µ =

A∑

i=1

r3
i Y1µ(r̂i) − η

A∑

i=1

riY1µ(r̂i). (3)

The inclusion of the second term in the isoscalar operator
Eq. (3) with η = 5〈r2〉/3 ensures that the corresponding
strength distribution does not contain spurious components

associated with the center-of-mass motion [58]. The strength
function reads

S(E) =
∑

ν

∣∣〈ν
∥∥Q̂T

J

∥∥0
〉∣∣2

δ(E − Eν). (4)

Eν is the energy of the RPA state |ν〉, and the moments of the
strength distribution are defined as

mk =
∫

dE EkS(E) =
∑

ν

Ek
ν

∣∣〈ν
∥∥Q̂T

J

∥∥0
〉∣∣2

. (5)

In the following, we analyze the occurrence and structure
of the PDSs in the isovector and isoscalar dipole responses of
68Ni, 132Sn, and 208Pb in relation to the density dependence of
the symmetry energy. In linear order with respect to the nuclear
matter density ρ, the symmetry energy S(ρ) is determined by
its value at saturation density S(ρ0) ≡ a4 and by the derivative
at saturation density,

S ′(ρ)|ρ=ρ0 ≡ L

3ρ0
, (6)

and this relation defines the “slope” parameter L. By using
data on the percentage of the EWSR associated with the PDSs
in 68Ni [15] and 132Sn [9], Carbone et al. [23] constrained
the value of the slope parameter L = 64.8 ± 15.7MeV in
accordance with values previously determined with different
types of analyses and/or other methods based on nuclear
structure and heavy-ion experiments. Here, we employ the
framework of relativistic energy density functionals rep-
resented by effective Lagrangians with density-dependent
meson-nucleon vertex functions. The parameters of the very
successful effective interactions DD-ME1 [56] and DD-ME2
[57], in particular, were adjusted simultaneously to empirical
properties of symmetric and asymmetric nuclear matter and
to binding energies and charge radii of 12 spherical nuclei.
Data on excitation energies of isoscalar (IS) giant monopole
resonances and isovector dipole giant resonances (IVGDRs)
were also used to determine the compressibility modulus
and asymmetry energy at saturation as well as available
data on differences between neutron and proton radii in
Sn isotopes and 208Pb. Numerous calculations have shown
that these interactions provide accurate results for ground-
state properties of spherical and deformed nuclei as well as
excitation energies of giant resonances. Pertinent to the present
analysis, the RRPA with the DD-ME2 effective interaction
predicts the dipole polarizability,

αD = 8π

9
e2m−1 (7)

(directly proportional to the inverse energy-weighted moment
m−1) for 208Pb: 20.8 fm3 in very good agreement with the
recently measured value αD = (20.1 ± 0.6) fm3 [20].

III. RESULTS

In an earlier paper [59], we used the RRPA with density-
dependent meson-nucleon effective interactions to provide a
microscopic estimate of the nuclear matter compressibility and
symmetry energy in relativistic mean-field models. Starting
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on binding energies when compared with a large set of
experimental data [3,37,38] and are able, through the RPA
approach, to predict the main features of giant resonances
[1–3]. To assess the sensitivity of our analysis on the nuclear
model, we employ three Skyrme parameter sets, namely SGII
[39], SLy5 [40], and SkI3 [41]. Since the low-energy isovector
dipole response of neutron-rich nuclei may be related with
the density derivative of the symmetry at saturation, the set
of chosen models have been selected due to the wide range
displayed for their predicted values of the L parameter. Such
a parameter is defined as L ≡ 3ρ∞[∂csym(ρ)/∂ρ]ρ∞ where
csym(ρ) is the symmetry energy, ρ is the nucleon density and
ρ∞ is the nuclear saturation density. All the studied nuclei are
spherical and double-magic. This renders our HF calculations
relatively simple and the analysis clearer since neither pairing
nor deformation should be included.

First and foremost, we are interested in the theoretical
study of the main features displayed by the low-energy RPA
state that give rise to the largest contribution to the PDS or,
hereinafter, RPA-pygmy state. In our work, we shall investigate
the isoscalar or isovector character displayed by the transition
densities associated to the RPA-pygmy state, and the most
relevant particle-hole (ph) excitations contributing to such a
state. In particular, we will emphasize that different operators
will produce a different number of coherent contributions
from ph amplitudes. This means that in the case of different
experimental probes one will see the same RPA-pygmy state
with a different associated degree of collectivity. In the final
stage of the preparation of this manuscript we have become
aware that a similar analysis has been performed in Ref. [28].

A brief summary of the employed formalism is given in
Sec. II where some properties of the interactions we use
are also detailed. In Sec. III, results are presented, analyzed
and compared with available experimental data. Finally, our
conclusions are laid in the last section.

II. FORMALISM

In this section we present the general expression of the
Skyrme interaction as well as some basic properties of the
parametrizations used in our analysis. A brief description of
the RPA formalism is also presented. We address the reader to
Refs. [40,42,43] for further details on the Skyrme interaction.

A. Skyrme interaction

The Skyrme interaction is a zero-range, velocity-dependent
interaction that describe nucleons with space, spin, and isospin
variables ri , σ i , and τ i . It is commonly written as in Ref. [40],

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[P′2δ(r) + δ(r)P2]

+ t2(1 + x2Pσ )P′ · δ(r)P
+ 1

6 t3(1 + x3Pσ )ρα(R)δ(r)

+ iW0(σ 1 + σ 2) · [P′ × δ(r)P], (1)

where r = r1 − r2, R = 1
2 (r1 + r2), P = 1

2i
(∇1 − ∇2), P′ is

the Hermitian conjugate of P (acting on the left), Pσ = 1
2 (1 +

σ 1 · σ 2) is the spin-exchange operator.
As mentioned already in the Introduction, we employ three

Skyrme interactions: SGII [39], SLy5 [40], and SkI3 [41]; as
many others, they have been accurately calibrated in order
to reproduce some bulk properties (the binding energies and
charge radii) of few selected stable nuclei, as well as some
empirical nuclear matter properties such as the saturation
energy and the saturation density (and others depending on the
specific set). Throughout this work, we are mainly interested
on the sensitivity of the PDS to the density derivative of the
symmetry energy at saturation [23]. Since SGII, SLy5, and
SkI3 are characterized by L equal to, respectively, 37.63 MeV,
48.27 MeV, and 100.52 MeV, they span a quite broad range
(comparable with the one spanned by most of the modern and
commonly used MF models available in the literature [32,33]).

B. Random phase approximation

The discrete RPA method is well known from textbooks
[44,45]. In our self-consistent approach, we build the resid-
ual interaction (V qq ′

residual) for the proton-proton (qq ′ = pp),
neutron-neutron (qq ′ = nn), and proton-neutron (qq ′ = pn)
channels from the Skyrme-HF energy density functional,
namely V

qq ′

residual ≡ δ2EHF/δρqδρq ′ . Then we solve fully self-
consistently the RPA equations by means of the matrix
formulation like in Refs. [46,47]. One should note that the
continuum is discretized by setting the system in a large box.

For any operator F̂JM the (reduced) transition strength or
probability is given by

B(EJ, 0̃ → ν) = |〈ν||F̂J ||0̃〉|2

=
∣∣∣∣∣
∑

ph

(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉

∣∣∣∣∣

2

, (2)

where 〈ν||F̂J ||0̃〉 is the reduced matrix element of F̂JM (see,
e.g., Ref. [48]). The initial state in all studied nuclei, |0̃〉,
corresponds to the RPA ground state with zero total angular
momentum and |ν〉 stands for a generic RPA excited state.
The latter equation is also written in an alternative notation
that will turn out to be useful for our present purposes. That is,
each RPA transition |0̃〉 → |ν〉 excited via F̂JM is composed
by all considered particle-hole (ph) pairs that couple to a
total angular momentum JM . The relative contribution of
each ph excitation to the reduced matrix element 〈ν||F̂J ||0̃〉
is accounted by the X

(ν)
ph and Y

(ν)
ph RPA amplitudes that specify

a given eigenvector of the RPA secular matrix [44]. For the
analysis of the single particle or collective character of a given
excitation in the response function, it is convenient to write the
reduced amplitude as follows:

Aph(EJ, 0̃ → ν) =
(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉. (3)

This is because Eq. (3) allows one to determine the coherency
(relative sign) and magnitude (|Aph(EJ, 0̃ → ν)|) of all the
ph contributions to the reduced transition probability. An RPA
state is claimed to be a resonant excitation if the corresponding
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on binding energies when compared with a large set of
experimental data [3,37,38] and are able, through the RPA
approach, to predict the main features of giant resonances
[1–3]. To assess the sensitivity of our analysis on the nuclear
model, we employ three Skyrme parameter sets, namely SGII
[39], SLy5 [40], and SkI3 [41]. Since the low-energy isovector
dipole response of neutron-rich nuclei may be related with
the density derivative of the symmetry at saturation, the set
of chosen models have been selected due to the wide range
displayed for their predicted values of the L parameter. Such
a parameter is defined as L ≡ 3ρ∞[∂csym(ρ)/∂ρ]ρ∞ where
csym(ρ) is the symmetry energy, ρ is the nucleon density and
ρ∞ is the nuclear saturation density. All the studied nuclei are
spherical and double-magic. This renders our HF calculations
relatively simple and the analysis clearer since neither pairing
nor deformation should be included.

First and foremost, we are interested in the theoretical
study of the main features displayed by the low-energy RPA
state that give rise to the largest contribution to the PDS or,
hereinafter, RPA-pygmy state. In our work, we shall investigate
the isoscalar or isovector character displayed by the transition
densities associated to the RPA-pygmy state, and the most
relevant particle-hole (ph) excitations contributing to such a
state. In particular, we will emphasize that different operators
will produce a different number of coherent contributions
from ph amplitudes. This means that in the case of different
experimental probes one will see the same RPA-pygmy state
with a different associated degree of collectivity. In the final
stage of the preparation of this manuscript we have become
aware that a similar analysis has been performed in Ref. [28].

A brief summary of the employed formalism is given in
Sec. II where some properties of the interactions we use
are also detailed. In Sec. III, results are presented, analyzed
and compared with available experimental data. Finally, our
conclusions are laid in the last section.

II. FORMALISM

In this section we present the general expression of the
Skyrme interaction as well as some basic properties of the
parametrizations used in our analysis. A brief description of
the RPA formalism is also presented. We address the reader to
Refs. [40,42,43] for further details on the Skyrme interaction.

A. Skyrme interaction

The Skyrme interaction is a zero-range, velocity-dependent
interaction that describe nucleons with space, spin, and isospin
variables ri , σ i , and τ i . It is commonly written as in Ref. [40],

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[P′2δ(r) + δ(r)P2]

+ t2(1 + x2Pσ )P′ · δ(r)P
+ 1

6 t3(1 + x3Pσ )ρα(R)δ(r)

+ iW0(σ 1 + σ 2) · [P′ × δ(r)P], (1)

where r = r1 − r2, R = 1
2 (r1 + r2), P = 1

2i
(∇1 − ∇2), P′ is

the Hermitian conjugate of P (acting on the left), Pσ = 1
2 (1 +

σ 1 · σ 2) is the spin-exchange operator.
As mentioned already in the Introduction, we employ three

Skyrme interactions: SGII [39], SLy5 [40], and SkI3 [41]; as
many others, they have been accurately calibrated in order
to reproduce some bulk properties (the binding energies and
charge radii) of few selected stable nuclei, as well as some
empirical nuclear matter properties such as the saturation
energy and the saturation density (and others depending on the
specific set). Throughout this work, we are mainly interested
on the sensitivity of the PDS to the density derivative of the
symmetry energy at saturation [23]. Since SGII, SLy5, and
SkI3 are characterized by L equal to, respectively, 37.63 MeV,
48.27 MeV, and 100.52 MeV, they span a quite broad range
(comparable with the one spanned by most of the modern and
commonly used MF models available in the literature [32,33]).

B. Random phase approximation

The discrete RPA method is well known from textbooks
[44,45]. In our self-consistent approach, we build the resid-
ual interaction (V qq ′

residual) for the proton-proton (qq ′ = pp),
neutron-neutron (qq ′ = nn), and proton-neutron (qq ′ = pn)
channels from the Skyrme-HF energy density functional,
namely V

qq ′

residual ≡ δ2EHF/δρqδρq ′ . Then we solve fully self-
consistently the RPA equations by means of the matrix
formulation like in Refs. [46,47]. One should note that the
continuum is discretized by setting the system in a large box.

For any operator F̂JM the (reduced) transition strength or
probability is given by

B(EJ, 0̃ → ν) = |〈ν||F̂J ||0̃〉|2

=
∣∣∣∣∣
∑

ph

(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉

∣∣∣∣∣

2

, (2)

where 〈ν||F̂J ||0̃〉 is the reduced matrix element of F̂JM (see,
e.g., Ref. [48]). The initial state in all studied nuclei, |0̃〉,
corresponds to the RPA ground state with zero total angular
momentum and |ν〉 stands for a generic RPA excited state.
The latter equation is also written in an alternative notation
that will turn out to be useful for our present purposes. That is,
each RPA transition |0̃〉 → |ν〉 excited via F̂JM is composed
by all considered particle-hole (ph) pairs that couple to a
total angular momentum JM . The relative contribution of
each ph excitation to the reduced matrix element 〈ν||F̂J ||0̃〉
is accounted by the X

(ν)
ph and Y

(ν)
ph RPA amplitudes that specify

a given eigenvector of the RPA secular matrix [44]. For the
analysis of the single particle or collective character of a given
excitation in the response function, it is convenient to write the
reduced amplitude as follows:

Aph(EJ, 0̃ → ν) =
(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉. (3)

This is because Eq. (3) allows one to determine the coherency
(relative sign) and magnitude (|Aph(EJ, 0̃ → ν)|) of all the
ph contributions to the reduced transition probability. An RPA
state is claimed to be a resonant excitation if the corresponding
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FIG. 2. (Color online) Strength function corresponding to the
isovector (a) and isoscalar (b) dipole response of 208Pb as a function
of the excitation energy. The inset in (a) displays in a larger scale the
pygmy region. In both figures the predictions of SGII, SLy5, and SkI3
are depicted. Black arrows indicate the experimental centroid energies
for the PDS (E = 7.37 MeV within a window of 6–8 MeV) [20], for
the ISGDR (E = 20.3 ± 2 MeV [58]) and the energy peak for the
IVGDR (E = 13.43 MeV and a total width of 2.42 MeV [59]).

predicted by the employed interactions (E = 7.6–8.0 MeV,
E = 20–21 MeV, and E = 12–13 MeV, respectively) fairly
agree with the experimental data (E = 7.37 MeV within a
window of 6–8 MeV [20], E = 20.1–20.5 MeV [58], and E =
13.43 MeV and a total width of 2.42 MeV [59], respectively).
Consequently, the RPA predictions of SGII, SLy5, and SkI3
may allow us to elucidate the microscopical structure and
properties of the PDS. In Table I the excitation energy and
isoscalar and isovector reduced transition probabilities of the
RPA-pygmy state—i.e., the RPA state which give rise to the
largest peak in the PDS region—are detailed for all the studied
nuclei as predicted by SGII, SLy5, and SkI3. In the case of
208Pb we find an excitation energy of E = 7.61 MeV for SGII,
E = 7.74 MeV for SLy5, and E = 8.01 MeV for SkI3. We
qualitatively observe that the low-energy peak found in the
IV and IS dipole responses of 208Pb shows an increasing and
outward trend with the excitation energy as the value of the
parameter L increases. This behavior is in agreement with
Ref. [23] where the energy weighted sum rule or m1 for the
PDS was found to be linearly correlated with L in mean-field
models.

In the case of 132Sn and 68Ni, the strength functions for the
dipole response are depicted in Figs. 3(a) and 4(a) (IV) and

TABLE I. Excitation energy E and isoscalar (ξ = IS) and isovec-
tor (ξ = IV) reduced transition probabilities B(E1; ξ ) corresponding
to the RPA-pygmy states of 68Ni, 132Sn, and 208Pb as predicted by
SGII, SLy5, and SkI3 interactions.

force E B(E1; IS) B(E1; IV)
[MeV] [fm6] [fm2]

68Ni SGII 9.77 1.9×103 1.4
SLy5 9.30 1.7×103 0.8
SkI3 10.45 3.0×103 3.6

132Sn SGII 8.52 3.3×103 1.2
SLy5 8.64 1.0×104 1.6
SkI3 9.23 1.1×104 7.4

208Pb SGII 7.61 1.7×104 2.9
SLy5 7.74 2.8×104 2.8
SkI3 8.01 1.9×104 6.6

Figs. 3(b) and 4(b) (IS), respectively. Again, the predictions
of SGII, SLy5, and SkI3 (E = 8.5–9.2 MeV for 132Sn and
E = 9.3–10.4 MeV for 68Ni) are in rather good agreement
with the measured data (E = 9.1−10.5 MeV for 132Sn [18]
and E = 11 MeV and an energy width estimated to be less
than 1 MeV for 68Ni [17]). In the case of 132Sn, the RPA-
pygmy state predicted by SGII correspond to a state with an
excitation energy of E = 8.52 MeV while SLy5 predicts E =
8.64 MeV and SkI3 E = 9.23 MeV. And for 68Ni, the values
predicted by SGII, SLy5, and SkI3 for the excitation energy
of the RPA-pygmy state are, respectively, E = 9.77 MeV,
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FIG. 3. (Color online) Same as Fig. 2 for 132Sn. The experimental
value for the peak energy of the PDS (E = 9.8 ± 0.7 MeV) is
indicated by a black arrow [18].
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FIG. 5. (Color online) Reduced transition probabilities for the isovector dipole response [(a), (c), and (e)] and isoscalar dipole response
[(b), (d), and (f)], in the case of 208Pb [(a) and (b)], 132Sn [(c) and (d)] and 68Ni [(e) and (f)] in s.p. units, as a function of the excitation energy
and as predicted by the selected MF interactions. Note that we only show the energy region relevant for our study of the RPA-pygmy state.

a low-lying isoscalar component basically due to oscillations
of the neutron skin thickness of the nucleus under study. It is
important to note that both investigations were reported to be
in qualitative agreement with the available experimental data.

On the basis of the above mentioned works and the
definitions given in Eq. (8) and in the text around, we
present a more systematic study of the isospin structure of
the low-energy RPA states as predicted by the forces SGII,
SLy5, and SkI3 for the studied 68Ni, 132Sn, and 208Pb nuclei.
First of all, we plot the neutron and proton, as well as the
isoscalar and isovector transition densities corresponding to
the RPA-pygmy state as predicted by each interaction in order
to illustrate how these low-energy transition densities behave.

We show the neutron and proton transition densities in
Figs. 6(a), 6(c), and 6(e), and the isoscalar and isovector
transition densities in Figs. 6(b), 6(d), and 6(f), respectively.
All of them, correspond to the RPA-pygmy state. The position
of the proton (rp) and neutron (rn) rms radii corresponds to the
edges of the grey region that defines in this way the neutron
skin thickness predicted by each interaction.

For the case of 208Pb, it can be seen from Fig. 2(a) that
neutrons and protons oscillate differently depending on the
interaction but in all cases the surface has a dominant isoscalar
character. On the contrary, the interior or bulk region is not
dominated by the isoscalar or isovector component but it is a
mixture of them. The isoscalar or isovector dominance is better
seen in Fig. 6(b). At the surface of the nucleus the isovector
transition density of the RPA-pygmy state is very close to zero,
while the isoscalar one is not.

In Figs. 6(c) (protons and neutrons) and 6(d) (IS and IV),
we display the transition densities for the case of 132Sn. It is

interesting to note that the situation is very similar to the one
found in 208Pb.

The neutron and proton transition densities corresponding
to the RPA-pygmy state in 68Ni are depicted in Fig. 6(e), and
the corresponding isoscalar and isovector ones are displayed
in Fig. 6(f). The behavior of the different transition densities is
predicted to be very similar within the studied models. This did
not hold for 132Sn and 208Pb where some qualitative differences
arose. Therefore, it is even more clear in this case that the
interior of 68Ni is not dominated by isoscalar or isovector
components. At the surface of the nucleus, the isoscalar part
dominates but the isovector part is not very small as it happened
for 132Sn or 208Pb.

Then, we apply our criteria for defining a 70% isoscalar
RPA state [see text after Eq. (8)] to all calculated excited
states and plot their contribution to the isovector dipole
strength function. We calculate the same quantity for different
regions. First, we apply the criteria to those states that
are 70% isoscalar in the region between 0 and R, where
R = r0A

1/3 (left panels in Fig. 7), then to those which are
70% isoscalar in the internal part of the nucleus, namely
between 0 and R/2 (central panels in the same figure), and
finally to those which are 70% isoscalar in the external part
of the nucleus between R/2 and R (right panels of the
same figure). Specifically, in Fig. 7(a), we show the above
mentioned calculations for 208Pb as predicted by SLy5 (dashed
line). As a guidance, we also show the total isovector dipole
stregth function (solid line). The results predicted by the other
interactions in the case of 208Pb are very similar and we are not
showing them. From such a figure, it is evident that the RPA
states which are mostly isoscalar in the whole region [0, R]
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FIG. 7. (Color online) Strength function corresponding to the
isovector dipole response of 208Pb (a), 132Sn (b) and 68Ni (c) as a
function of the excitation energy (solid lines), and partial contribution
due to those states which are at least 70% isoscalar (dashed line): for
each of the panels, the RPA states that are at least 70% isoscalar
between 0 and R are considered in the panel at the left hand side,
those which have this feature between 0 and R/2 are considered in
the central panel, and those which are like that between R/2 and R

are considered in the panel at the right hand side. See text for further
explanations.

responses, respectively. Both reduced amplitudes have been
calculated for the case of the RPA-pygmy state predicted by
the different MF models. Notice that not all contributions
can be seen from these figures since most of them are very
small.

It is evident from Fig. 8(b) that the contributions of the
most relevant ph excitations to the isovector reduced amplitude
are only a few in number and there is some amount of
destructive interference. Accordingly, we have seen that their
total contribution to the isovector reduced transition strength
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FIG. 8. (Color online) Proton and neutron single particle levels of
208Pb as predicted by the different MF models (a). The Fermi level is
indicated by a dashed black line. All ph contributions to the isovector
reduced amplitude corresponding to the 208Pb RPA-pygmy state as
a function of the ph excitation energy (c). All studied models are
shown. Largest neutron ph contributions are also listed in decreasing
order from top to bottom. Same as (b) but for the isoscalar reduced
amplitude (c).

in s.p. units do not clearly exceed one. Opposite to that, it
is also evident from Fig. 8(c) that the contributions of the
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on binding energies when compared with a large set of
experimental data [3,37,38] and are able, through the RPA
approach, to predict the main features of giant resonances
[1–3]. To assess the sensitivity of our analysis on the nuclear
model, we employ three Skyrme parameter sets, namely SGII
[39], SLy5 [40], and SkI3 [41]. Since the low-energy isovector
dipole response of neutron-rich nuclei may be related with
the density derivative of the symmetry at saturation, the set
of chosen models have been selected due to the wide range
displayed for their predicted values of the L parameter. Such
a parameter is defined as L ≡ 3ρ∞[∂csym(ρ)/∂ρ]ρ∞ where
csym(ρ) is the symmetry energy, ρ is the nucleon density and
ρ∞ is the nuclear saturation density. All the studied nuclei are
spherical and double-magic. This renders our HF calculations
relatively simple and the analysis clearer since neither pairing
nor deformation should be included.

First and foremost, we are interested in the theoretical
study of the main features displayed by the low-energy RPA
state that give rise to the largest contribution to the PDS or,
hereinafter, RPA-pygmy state. In our work, we shall investigate
the isoscalar or isovector character displayed by the transition
densities associated to the RPA-pygmy state, and the most
relevant particle-hole (ph) excitations contributing to such a
state. In particular, we will emphasize that different operators
will produce a different number of coherent contributions
from ph amplitudes. This means that in the case of different
experimental probes one will see the same RPA-pygmy state
with a different associated degree of collectivity. In the final
stage of the preparation of this manuscript we have become
aware that a similar analysis has been performed in Ref. [28].

A brief summary of the employed formalism is given in
Sec. II where some properties of the interactions we use
are also detailed. In Sec. III, results are presented, analyzed
and compared with available experimental data. Finally, our
conclusions are laid in the last section.

II. FORMALISM

In this section we present the general expression of the
Skyrme interaction as well as some basic properties of the
parametrizations used in our analysis. A brief description of
the RPA formalism is also presented. We address the reader to
Refs. [40,42,43] for further details on the Skyrme interaction.

A. Skyrme interaction

The Skyrme interaction is a zero-range, velocity-dependent
interaction that describe nucleons with space, spin, and isospin
variables ri , σ i , and τ i . It is commonly written as in Ref. [40],

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[P′2δ(r) + δ(r)P2]

+ t2(1 + x2Pσ )P′ · δ(r)P
+ 1

6 t3(1 + x3Pσ )ρα(R)δ(r)

+ iW0(σ 1 + σ 2) · [P′ × δ(r)P], (1)

where r = r1 − r2, R = 1
2 (r1 + r2), P = 1

2i
(∇1 − ∇2), P′ is

the Hermitian conjugate of P (acting on the left), Pσ = 1
2 (1 +

σ 1 · σ 2) is the spin-exchange operator.
As mentioned already in the Introduction, we employ three

Skyrme interactions: SGII [39], SLy5 [40], and SkI3 [41]; as
many others, they have been accurately calibrated in order
to reproduce some bulk properties (the binding energies and
charge radii) of few selected stable nuclei, as well as some
empirical nuclear matter properties such as the saturation
energy and the saturation density (and others depending on the
specific set). Throughout this work, we are mainly interested
on the sensitivity of the PDS to the density derivative of the
symmetry energy at saturation [23]. Since SGII, SLy5, and
SkI3 are characterized by L equal to, respectively, 37.63 MeV,
48.27 MeV, and 100.52 MeV, they span a quite broad range
(comparable with the one spanned by most of the modern and
commonly used MF models available in the literature [32,33]).

B. Random phase approximation

The discrete RPA method is well known from textbooks
[44,45]. In our self-consistent approach, we build the resid-
ual interaction (V qq ′

residual) for the proton-proton (qq ′ = pp),
neutron-neutron (qq ′ = nn), and proton-neutron (qq ′ = pn)
channels from the Skyrme-HF energy density functional,
namely V

qq ′

residual ≡ δ2EHF/δρqδρq ′ . Then we solve fully self-
consistently the RPA equations by means of the matrix
formulation like in Refs. [46,47]. One should note that the
continuum is discretized by setting the system in a large box.

For any operator F̂JM the (reduced) transition strength or
probability is given by

B(EJ, 0̃ → ν) = |〈ν||F̂J ||0̃〉|2

=
∣∣∣∣∣
∑

ph

(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉

∣∣∣∣∣

2

, (2)

where 〈ν||F̂J ||0̃〉 is the reduced matrix element of F̂JM (see,
e.g., Ref. [48]). The initial state in all studied nuclei, |0̃〉,
corresponds to the RPA ground state with zero total angular
momentum and |ν〉 stands for a generic RPA excited state.
The latter equation is also written in an alternative notation
that will turn out to be useful for our present purposes. That is,
each RPA transition |0̃〉 → |ν〉 excited via F̂JM is composed
by all considered particle-hole (ph) pairs that couple to a
total angular momentum JM . The relative contribution of
each ph excitation to the reduced matrix element 〈ν||F̂J ||0̃〉
is accounted by the X

(ν)
ph and Y

(ν)
ph RPA amplitudes that specify

a given eigenvector of the RPA secular matrix [44]. For the
analysis of the single particle or collective character of a given
excitation in the response function, it is convenient to write the
reduced amplitude as follows:

Aph(EJ, 0̃ → ν) =
(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉. (3)

This is because Eq. (3) allows one to determine the coherency
(relative sign) and magnitude (|Aph(EJ, 0̃ → ν)|) of all the
ph contributions to the reduced transition probability. An RPA
state is claimed to be a resonant excitation if the corresponding
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on binding energies when compared with a large set of
experimental data [3,37,38] and are able, through the RPA
approach, to predict the main features of giant resonances
[1–3]. To assess the sensitivity of our analysis on the nuclear
model, we employ three Skyrme parameter sets, namely SGII
[39], SLy5 [40], and SkI3 [41]. Since the low-energy isovector
dipole response of neutron-rich nuclei may be related with
the density derivative of the symmetry at saturation, the set
of chosen models have been selected due to the wide range
displayed for their predicted values of the L parameter. Such
a parameter is defined as L ≡ 3ρ∞[∂csym(ρ)/∂ρ]ρ∞ where
csym(ρ) is the symmetry energy, ρ is the nucleon density and
ρ∞ is the nuclear saturation density. All the studied nuclei are
spherical and double-magic. This renders our HF calculations
relatively simple and the analysis clearer since neither pairing
nor deformation should be included.

First and foremost, we are interested in the theoretical
study of the main features displayed by the low-energy RPA
state that give rise to the largest contribution to the PDS or,
hereinafter, RPA-pygmy state. In our work, we shall investigate
the isoscalar or isovector character displayed by the transition
densities associated to the RPA-pygmy state, and the most
relevant particle-hole (ph) excitations contributing to such a
state. In particular, we will emphasize that different operators
will produce a different number of coherent contributions
from ph amplitudes. This means that in the case of different
experimental probes one will see the same RPA-pygmy state
with a different associated degree of collectivity. In the final
stage of the preparation of this manuscript we have become
aware that a similar analysis has been performed in Ref. [28].

A brief summary of the employed formalism is given in
Sec. II where some properties of the interactions we use
are also detailed. In Sec. III, results are presented, analyzed
and compared with available experimental data. Finally, our
conclusions are laid in the last section.

II. FORMALISM

In this section we present the general expression of the
Skyrme interaction as well as some basic properties of the
parametrizations used in our analysis. A brief description of
the RPA formalism is also presented. We address the reader to
Refs. [40,42,43] for further details on the Skyrme interaction.

A. Skyrme interaction

The Skyrme interaction is a zero-range, velocity-dependent
interaction that describe nucleons with space, spin, and isospin
variables ri , σ i , and τ i . It is commonly written as in Ref. [40],

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[P′2δ(r) + δ(r)P2]

+ t2(1 + x2Pσ )P′ · δ(r)P
+ 1

6 t3(1 + x3Pσ )ρα(R)δ(r)

+ iW0(σ 1 + σ 2) · [P′ × δ(r)P], (1)

where r = r1 − r2, R = 1
2 (r1 + r2), P = 1

2i
(∇1 − ∇2), P′ is

the Hermitian conjugate of P (acting on the left), Pσ = 1
2 (1 +

σ 1 · σ 2) is the spin-exchange operator.
As mentioned already in the Introduction, we employ three

Skyrme interactions: SGII [39], SLy5 [40], and SkI3 [41]; as
many others, they have been accurately calibrated in order
to reproduce some bulk properties (the binding energies and
charge radii) of few selected stable nuclei, as well as some
empirical nuclear matter properties such as the saturation
energy and the saturation density (and others depending on the
specific set). Throughout this work, we are mainly interested
on the sensitivity of the PDS to the density derivative of the
symmetry energy at saturation [23]. Since SGII, SLy5, and
SkI3 are characterized by L equal to, respectively, 37.63 MeV,
48.27 MeV, and 100.52 MeV, they span a quite broad range
(comparable with the one spanned by most of the modern and
commonly used MF models available in the literature [32,33]).

B. Random phase approximation

The discrete RPA method is well known from textbooks
[44,45]. In our self-consistent approach, we build the resid-
ual interaction (V qq ′

residual) for the proton-proton (qq ′ = pp),
neutron-neutron (qq ′ = nn), and proton-neutron (qq ′ = pn)
channels from the Skyrme-HF energy density functional,
namely V

qq ′

residual ≡ δ2EHF/δρqδρq ′ . Then we solve fully self-
consistently the RPA equations by means of the matrix
formulation like in Refs. [46,47]. One should note that the
continuum is discretized by setting the system in a large box.

For any operator F̂JM the (reduced) transition strength or
probability is given by

B(EJ, 0̃ → ν) = |〈ν||F̂J ||0̃〉|2

=
∣∣∣∣∣
∑

ph

(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉

∣∣∣∣∣

2

, (2)

where 〈ν||F̂J ||0̃〉 is the reduced matrix element of F̂JM (see,
e.g., Ref. [48]). The initial state in all studied nuclei, |0̃〉,
corresponds to the RPA ground state with zero total angular
momentum and |ν〉 stands for a generic RPA excited state.
The latter equation is also written in an alternative notation
that will turn out to be useful for our present purposes. That is,
each RPA transition |0̃〉 → |ν〉 excited via F̂JM is composed
by all considered particle-hole (ph) pairs that couple to a
total angular momentum JM . The relative contribution of
each ph excitation to the reduced matrix element 〈ν||F̂J ||0̃〉
is accounted by the X

(ν)
ph and Y

(ν)
ph RPA amplitudes that specify

a given eigenvector of the RPA secular matrix [44]. For the
analysis of the single particle or collective character of a given
excitation in the response function, it is convenient to write the
reduced amplitude as follows:

Aph(EJ, 0̃ → ν) =
(
X

(ν)
ph + Y

(ν)
ph

)
〈p||F̂J ||h〉. (3)

This is because Eq. (3) allows one to determine the coherency
(relative sign) and magnitude (|Aph(EJ, 0̃ → ν)|) of all the
ph contributions to the reduced transition probability. An RPA
state is claimed to be a resonant excitation if the corresponding
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… reduced amplitude:

Isovector reduced amplitude of the PDS → destructive 
interference of a small number of particle-hole configurations. 
The reduced transition probability does not exceed ≈ 2-4  
single-particle units.  

Isoscalar channel → coherent superposition of neutron 
particle-hole configurations. Collective response of the PDS to 
the isoscalar dipole operator ≈10 - 20 single-particle units.
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Typically, the unambiguous determination of the quantum 
numbers of nuclear states is a challenging task. Recently, it 
has been proposed to utilize to this aim vortex photons in the 
MeV energy region and, potentially, this could revolution-
ize nuclear spectroscopy because of the new and enhanced 
selectivity of this probe. Moreover, nuclei may become diag-
nostic tools for vortex photons. Still, some open questions 
have to be dealt with.

Nuclei exhibit intricate excitation spectra. Indeed, not all 
states within these spectra are equally significant. Some are 
not sensitive to specific terms in the nuclear Hamiltonian or 
do not display novel features, so that investigating them is 
not helpful to enhance our overall understanding of nuclear 
structure. On the other hand, there are states that manifest 
themselves as prominent peaks, e.g., in the inelastic scat-
tering spectra. Among the best examples are the so-called 
Giant Resonances that lie at energies of the order of tens of 
MeV [1].

Giant resonances not only represent easily excitable 
states, but they are also deeply linked with our understand-
ing of the nuclear collective phenomena and of the effec-
tive Hamiltonian that govern them. The large magnitude of 
their excitation cross-section stems from the fact that a sig-
nificant fraction of the nucleons are excited. In brief, giant 
resonances are a clear example of nuclear collective motion. 
These resonances come in various forms and are associated 
with different quantum numbers. For instance, in a spherical 
nucleus, the total angular momentum J and the parity 𝜋 are 
the exact quantum numbers, in principle; but  J is the sum of 
the spatial angular momentum  L and spin  S , and these lat-
ter are approximate quantum numbers but still are valid to 
classify giant resonances.

The monopole ( J = 0 ), dipole ( J = 1 ) and quadrupole 
( J = 2 ) resonances have been known for some time and have 
proven to provide very specific and valuable insight. The 
giant monopole resonance, often referred to as the nuclear 
“breathing mode,” has been shown to be correlated to, and 
inform us about, the incompressibility of nuclear matter [2]. 
In the dipole case, the predominant physical mode involves 
neutrons oscillating in opposition to protons and is known 
as the isovector giant dipole resonance (IVGDR). It is analo-
gous to what takes place in molecules and clusters, where 
electrons oscillate with respect to the ions in the “plasmon” 
modes [3]. Just as plasmons are highly sensitive to the 
screening of the Coulomb interaction, in the very same way 
the IVGDR is sensitive to the neutron–proton interaction in 
the nuclear medium [4].

In short, giant resonances have been so far an extremely 
valuable source of information to solve some of the key 
questions related to the physics of the atomic nucleus, and it 
is highly probable that the discovery of new giant resonances 
will enrich this understanding. However, here comes the sig-
nificant challenge: For many years, the absence of exclusive 
probes that can excite giant resonances has constituted a 
significant impediment. This is, to some extent, also true for 
other nuclear excited states. There exist low-lying excitations 
that are sensitive to nucleon correlations around the Fermi 
energy and excited states that are good probes of nuclear 
rotation, nucleon clustering, or coupling to the continuum. 
Last but not least, some specific states play a very important 
role in astrophysical phenomena like stellar stability and the 
synthesis of new elements.

Protons, 𝛼-particles, and heavier ions are often used in 
inelastic scattering experiments. 𝛼-particles, for instance, 
are essentially pure S = 0 states in their ground state; thus, 
they do not transfer spin to the nucleus when inelastically 
scattered, but they do transfer different values of L. From a 
semiclassical perspective, during a grazing collision where 
the 𝛼-particle and the nucleus barely make contact, corre-
sponding to an impact parameter equal to the sum R of their 
radii, the transferred value of L can be estimated as
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Here, k is the initial wave vector and 𝜃 is the scattering angle. 
However, the semiclassical argument is only a rough esti-
mate: In fact, the partial cross sections associated with dif-
ferent L-transfers are smeared and overlap with one another. 
There is no unambiguous way to separate them, and this 
is a first source of uncertainty when using inelastic scat-
tering to identify giant resonances or other excited states. 
An even more significant source of uncertainty arises from 
the incomplete knowledge of the 𝛼-nucleus interaction. As 
a consequence, extracting the properties of the giant reso-
nances from the measured cross section becomes a highly 
model-dependent procedure.

Here comes the breakthrough, as detailed in Ref. [5]. Let 
us imagine we wish to investigate elusive Giant Resonances, 
like, e.g., the octupole ( J = 3 ), and we ask ourselves how to 
do so. In [5], a novel method has been proposed to excite 
giant resonances having a given angular momentum, in a 
controlled way. The idea is to exploit the electromagnetic 
interaction using photons with good orbital angular momen-
tum, rather than linear momentum. These are called twisted 
photons, or vortex photons.

An excellent introduction to photons with nonzero 
orbital angular momentum can be found in Ref. [6]. They 
have been used in optics [7] and atomic physics [8] for quite 
some time, since the pioneering work in Ref. [9]. Electron 
vortex states are reviewed in [10]. A recent review with 
many ideas related to possible, innovative applications to 
nuclear and high-energy physics of the vortex states of 
photons, electrons and neutrons can be found in Ref. [11]. 
A vortex state of a field propagates along a given direc-
tion, say the z-axis, and carries a nonzero projection of the 
angular momentum along that axis. In the case of photons, 
vortex states are solution of the wave equation in cylindrical 
symmetry.

Figure 1 provides an illustration of the vortex photon 
field, offering a visual representation of its features. The 
wave propagates, on average, along the z-axis, and Fig. 1a 
shows its spiralling Poynting vector. This wave is a linear 
combination, with given amplitudes, of plane waves com-
ponents associated with wave vectors k that are situated 
on the surface of a cone and possess a transverse wave 
vector 𝜅 , together with a z-component equal to kz . The 
opening angle of this cone is 𝜃k = arctan

𝜅

kz
 [cf. Figure 1b]. 

In the case of a scalar field, the orbital angular momentum 
m𝓁 along the z-axis stems from the fact that the combina-
tion of wave vectors on the surface of the cone is charac-
terized by a phase eim𝓁𝜙k , where 𝜙k is the angle around z. 
In the case of a vector field, one has to take into account 
the spin quantum number and this leads to slightly more 
intricate mathematical formulas. Details can be found in 

(1)L = 2kR sin
𝜃

2
 kR𝜃.

[5, 6]. For our present discussion, what matters is the fact 
that one needs to introduces the spin of the photon: its 
projection 𝜎 on the z-axis, when combined with the projec-
tion of the orbital angular momentum m𝓁 , produces the 
total angular momentum  along z, that is m = m𝓁 + 𝜎,  
whereas, at the same time, its projection on the direction 
of k is defined as the helicity   . Figure 1c displays the 
vector potential associated with such photon field, in the 
case of so-called Bessel modes, for specific values of m, 
𝜃k and  .

Let us now consider a scenario in which the photon is 
absorbed by a nucleus lying precisely on the beam axis, that 
is, at zero impact parameter ( b = 0 ). The z-component of 
the angular momentum of the photon, m, is transferred to 
the nucleus. Therefore, one can be sure that J  |m| . Com-
ing back to our question above, we know how to excite 
selectively octupole or larger multipoles, eliminating the 
dipole and quadrupole contributions. That is in itself very 
relevant but, in addition, a more subtle feature displayed by 
the absorption process emerges. Conservation laws dictate 
that the angular momentum must be conserved along differ-
ent axis that are rotated with respect to each other. As just 
mentioned, in addition to projecting angular momentum on 
the z-axis, we can project on the direction of k . The overall 
result is expressed by a mathematical function [for those 
well-versed in quantum theory of angular momentum, this is 
a Wigner matrix dJ

m 
(𝜃k) ] that expresses the joint probability 

amplitude that the nucleus receives an amount of angular 
momentum J, by absorbing a photon with angular momen-
tum m along z and with a spin   on a direction that forms 
an angle 𝜃k relative to z. Since this function has different 
zeros and maxima for different J, one can exploit this feature 
to enhance the selectivity and, for instance, excite J = |m| 
while eliminating J = |m| + 1 . The selectivity which was not 
possible with inelastically scattered particles, shows up as is 
evident from the simulations in Fig. 2.

Fig. 1  (Color online) a Curve representing the propagation (i.e., the 
Poynting vector) along the z-axis of a vortex field. Taken from Ref. 
[9]. b The cone on which plane wave components of the vortex field 
lie. c Illustration of the vector potential on the xy-plane, in the case 
m = 5 , 𝜃k = arsin0.2 and  = 1 . Taken from Ref. [6]

They differ from plane waves by the existence of a 
nonzero projection of the orbital angular momentum on 
the direction of propagation, and from spherical waves 
by the existence of a certain direction of propagation.  

The projection m of the orbital angular momentum is a 
good quantum number for twisted states, while the 
values of the angular momentum: l ≥ |m|.
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Giant resonances with specific multipolarity can be selectively excited by vortex photons.
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Mf → Mi = Λ

Vortex ϑ photons: Mf → Mi = mϑ

FIG 1. Scenario of nuclear responses excited either by plane wave or vortex ω photons on the beam axis. In the momentum space,the vortex
state can be interpreted as a coherent superposition of plane waves having wave vectors k, arranged on a cone defined by the polar angle
εk = arctan(⊋/kz) and the azimuth angle ϑk. Here, kz and ⊋ denote the longitudinal momentum and the transverse momentum |k→|, respectively.
The projections of the OAM of ω photon on its propagation direction is ml = mω ↑ ms, where ms is the photon spin projection on its propagation
direction. The mutual phases (color-coded) of the plane waves in the spectrum increase by 2ϖml around the circle. The arrows linking the
ground state (GS) to GDR, GQR, and giant octupole resonance (GOR) symbolize the electromagnetic transition with multipolarities J=1, 2, 3,
respectively. The selection rule of plane wave is |Ji ↑ J f | ↭ |J| ↭ Ji + J f , Mf ↑ Mi = Λ (the helicity, here Λ = 1), while the modification of
selection rule of vortex state is Mf ↑ Mi = mω, where Mi and Mf are TAM projection on photon’s propagation direction for the initial and final
states of the nucleus. The red cross means that the transition is forbidden. The forbidden transitions represent the electromagnetic transitions
with |J| < |mω | are forbidden, and the quasi-pure transitions represent the electromagnetic transition that almost entirely from a contribution of |J|
= |mω |. (details in Figs. 2 and 3).

[35, 36], and atomic physics [37, 38]. Currently, vortex pho-
tons spanning from visible to X-ray (even ω-ray) regimes have
been generated through optical mode conversion techniques,
high harmonic generation, or coherent radiation in helical undu-
lators and laser facilities [39–44]. With the rapid developments
of ultraintense, ultrashort laser techniques [45, 46], the gen-
eration of vortex ω photons are proposed, where most of the
studies consider Compton scattering to attain high energy and
OAM [30, 47–59]. Studies of atomic excitation using vortex
photons [37, 38, 60–68] have shown that absorption of photons
with non-zero OAM by atoms can excite multipole transitions
that are otherwise suppressed for plane wave photons, due to
modifications of the atomic transition selection rules on the
beam axis. In nuclear physics, cross sections of deuteron photo-
disintegration by vortex photons [69] via 3

S 1 ↓1
S 0 magnetic

dipole (M1) transition have been compared with those by plane
wave photons. Nonetheless, the excitations of higher multi-
pole transitions in nuclei via vortex photons are still an open
question.

In this Letter, we investigate the collective excitations of
different multipole transitions in nuclei via vortex ω photons.

We develop the calculation method for photonuclear cross sec-
tions induced by the vortex ω photon beam using the fully
self-consistent RPA+PVC model based on Skyrme density
functional [70–73]. As the interaction scenario illustrated in
Fig. 1, the electromagnetic transitions are unrestricted for plane
wave ω photons. However, when the nucleus is positioned on
the beam axis, the electromagnetic transitions with multipolar-
ity J < mω are forbidden for vortex ω photons (indicated by
“forbidden transitions”) due to the conservation laws of angular
momentum. The electromagnetic transitions with J > mω are
strongly suppressed compared with the plane-wave-ω-photon
case, and even vanish at specific polar angles, thus quasi-pure
transitions appear (details in Figs. 2 and 3). Furthermore, we
analyze the impact of the nucleus positioned far from the beam
axis, as well as the superimposition of vortex ω photons with
different mω, in Figs. 4 and 5, respectively. Manipulating GRs
with different multipolarities via vortex ω photons with dif-
ferent mω enables investigating isovector giant resonances of
higher multipolarities without interference from other tran-
sitions, which broadens the research scope of photonuclear
reaction compared with plane wave ω photons, and provides
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valuable insights into the nuclear structure and the EOS for
supernovae and compact stars [15, 18, 26]. Additionally, for-
bidden and quasi-pure transitions excited by vortex ω photons
might construct a three-level system for coherent zeptosecond
ω photon laser [74–76].

Meanwhile, exploring the vortex properties of single ω pho-
ton is a fascinating area of research [30, 39]. Vortex pho-
tons, ranging from visible to X-ray frequencies, have been
successfully detected through interference with a reference
beam [40–44]. However, detecting the vortex ω photons re-
mains a challenge. We find that the vortex properties of ω
photons can be determined accurately by measuring the nu-
clear photon-absorption cross section (see Figs. 2 and 5).

In the RPA+PVC model, the coupling of single-nucleon
states to low-lying phonons (1 particle-1 hole-1 phonon config-
urations) is taken into account. While the RPA model provides
a good description of GRs’ energies, the PVC effect is cru-
cial for describing the damping width of GRs [77]. Using the
strength function S µJ (electric: µ = E; magnetic: µ = M)
obtained by RPA+PVC model, we can derive the the nuclear
photon-absorption cross section ε(pl) of a plane wave ω photon
beam interacting with nucleus [see Eq. (8) in supplemental
material (S.M.) [78]].

The nuclear photon-absorption cross section ε(tw) of a vortex
ω photon beam, interacting with nucleus, differs from the case
of plane wave due to the vortex state’s vector potential A(tw)

⊋mωkzΛ

and its ensuing change in the flux density and transition ampli-
tude. To compare the nuclear photon-absorption cross sections
of vortices and plane waves, we assume that the average flux
density of vortex ω photons along its propagation direction is
equivalent to that of plane wave multiplied by cos ϑk [68, 79],
and we introduce a quantity r

(tw), which represents the ratio of
vortex and plane wave cross section for nuclear excitation, i.e.,
r

(tw) = ε(tw)/ε(pl) [see Eq. (19) in S.M. [78]]. The ratio r
(tw)

exhibits two supplementary features being dependent upon
the vortex properties of the incoming ω photons (i.e., mω and
ϑk), namely, the Bessel function and Wigner d-function. With
the property of Bessel function, the selection rule is modified
as Mf → Mi = mω on the beam axis, which indicates that the
full projection of the TAM of ω photon along its propagation
direction can be transferred to the nuclear degrees of freedom.
This results in the occurrence of forbidden transitions in Fig. 1.
Additionally, we investigate the ratio r

(tw) [see Eq. (23) in S.M.
[78]] for a superposition of vortex ω photons, consisting of two
equally intense vortex ω photons with the difference of vortex
charges ∆m = m2 → m1 and relative phase ϖ, where m1 and
m2 are both TAM projections of ω photon on its propagation
direction. The effects of macroscopic and mesoscopic target
are discussed in Sec. III of S.M. [78].

Vortex effects on the nucleus are the same for electric and
magnetic transitions since the ratio r

(tw) is parity indepen-
dent and angular momentum dependent. For convenience,
we perform calculations of the electric transitions (E1, E2 and
E3) in nucleus 208Pb using both plane wave ω photons and
vortex ω photons with Bessel mode, and the nuclear photon-
absorption cross sections are shown in Fig. 2. We choose
208Pb due to the availability of experimental data [80], large
photon-absorption cross section and ongoing challenges in
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tic photon-absorption cross sections. Other modes of vor-
tex ω photons, e.g, Bessel–Gauss and Laguerre–Gauss modes,
have similar results (discussed in Sec. IV of S.M. [78]). For
plane wave ω photons [Fig. 2 (a)], we find that the theoretical
results are in good agreement with the experiment, where
the peak energies for theoretical and experimental results
are Eω,tot = 12.80 MeV and Eω,exp = 13.40 MeV, respec-
tively, and the corresponding cross sections are ε(pl)

tot = 648.03
mb and εexp = 641.50 mb, respectively. It is also found
that the E1, E2 and E3 photon-absorption cross sections of
plane wave exhibit characteristic peaks, corresponding to en-
ergies and cross sections of Eω,1 = 12.80 MeV,ε(pl)

E1 (Eω,1) =
635.76 mb; Eω,2 = 24.20 MeV,ε(pl)

E2 (Eω,2) = 63.75 mb and
Eω,3 = 34.00 MeV,ε(pl)

E3 (Eω,3) = 6.49 mb, respectively. Below
photon energy 20 MeV, the total cross section ε(pl)

tot is domi-
nated by the E1 cross section ε(pl)

E1 . While the photon energy
Eω exceeds 20 MeV, the contribution from ε(pl)

E1 is a bit larger
than that of ε(pl)

E2 . For ε(pl)
E3 , its contribution is always negligi-

ble. Thus, studying E2 and E3 cross sections using plane wave
photons is challenging.

However, the contribution of E2 cross section can be distin-
guished by vortex ω photon with mω = 2 due to the forbiddance
of E1 transition and the dominance of E2 transition, as shown
in Fig. 2 (b) and corresponding to the forbidden E1 transi-
tion in Fig. 1. Similarly, the contribution of E3 cross section
can be distinguished by vortex ω photon with mω = 3, as
shown in Fig. 2 (c) corresponding to the forbidden E1 and
E2 transitions in Fig. 1. As a result, we can find that vortex
ω photons with mω = 1, mω = 2 and mω = 3 are with the
different peak energies of the photon-absorption cross section
corresponding to the peak energies of E1, E2 and E3 tran-
sitions of plane wave, respectively [Figs. 2 (b)-(d)]. Thus,
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IVGQR [27, 28]. The excitation of other nuclei by vortex
ω photons is similar, albeit with changes in the characteris-
tic photon-absorption cross sections. Other modes of vor-
tex ω photons, e.g, Bessel–Gauss and Laguerre–Gauss modes,
have similar results (discussed in Sec. IV of S.M. [78]). For
plane wave ω photons [Fig. 2 (a)], we find that the theoretical
results are in good agreement with the experiment, where
the peak energies for theoretical and experimental results
are Eω,tot = 12.80 MeV and Eω,exp = 13.40 MeV, respec-
tively, and the corresponding cross sections are ε(pl)

tot = 648.03
mb and εexp = 641.50 mb, respectively. It is also found
that the E1, E2 and E3 photon-absorption cross sections of
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ble. Thus, studying E2 and E3 cross sections using plane wave
photons is challenging.

However, the contribution of E2 cross section can be distin-
guished by vortex ω photon with mω = 2 due to the forbiddance
of E1 transition and the dominance of E2 transition, as shown
in Fig. 2 (b) and corresponding to the forbidden E1 transi-
tion in Fig. 1. Similarly, the contribution of E3 cross section
can be distinguished by vortex ω photon with mω = 3, as
shown in Fig. 2 (c) corresponding to the forbidden E1 and
E2 transitions in Fig. 1. As a result, we can find that vortex
ω photons with mω = 1, mω = 2 and mω = 3 are with the
different peak energies of the photon-absorption cross section
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1 Introduction

One of the most outstanding problems in nuclear physics is
the accurate determination of the nuclear equation of state
(EoS) [2, 3]. The nuclear symmetry energy is one of the
fundamental ingredients to describe the EoS when dealing
with isospin asymmetric matter [4, 5] and its determina-
tion may entail profound consequences in our understand-
ing of heavy-ion reactions [6], neutron stars [7], or of the
Standard Model via atomic parity violation [8].

Specifically, the symmetry energy is the energy per
particle needed to change protons into neutrons in uniform
matter at a given density ρ. At saturation density of sym-
metric matter, ρ0 ≈ 0.16 fm−3, its value is estimated to be
between 28-35 MeV [3]. If β is the local neutron-proton
asymmetry, β ≡ (ρn−ρp)/ρ, the energy per particle in mat-
ter having neutron-proton imbalance is a function E

A (ρ, β).
Such function can be expanded in even powers of β owing
to isospin symmetry (the Coulomb force has to be taken
out when dealing with a uniform system). By retaining
only the quadratic term we can write

E
A

(ρ, β) =
E
A

(ρ, β = 0) + S (ρ)β2. (1)

This equation defines the symmetry energy S (ρ), that is,
the difference between the energy per particle E/A in neu-
tron and symmetric matter.

It is customary to expand Eq. (1) around saturation
density as

S (ρ) = J + L
(
ρ − ρ0

3ρ0

)
+

1
2

Ksym

(
ρ − ρ0

3ρ0

)2

+ . . . , (2)

where different parameters have been defined, namely
J ≡ S (ρ0), L ≡ 3ρ0 S ′(ρ0), and Ksym ≡ 9ρ2

0 S ′′(ρ0).
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Predictions on these parameters based on different nu-
clear models has been documented along the years. While
Ksym is basically not known, the error on L, referred to
as the “slope parameter”, is believed to be still signif-
icantly larger than the error on J: ranges between 30-
90 MeV approximatelly [2, 3, 9–11]. Many authors have
pointed out a correlation between L and the neutron skin
∆Rnp ≡ ⟨r2

n⟩1/2 − ⟨r2
p⟩1/2 of a heavy nucleus like 208Pb [12–

15]. Accurate measurements of the neutron skin are still
required to pin down the value of L [16–20].

The difficulties in determining the symmetry energy
are essentially associated with our incomplete understand-
ing of the strong interaction in the low-energy regime.
Therefore, to find a connection with an observable that is
not sensitive to the strong force becomes an asset. The
Isobaric Analog State (IAS) is one of the well established
properties of nuclei that is measured accurately, and is only
sensitive to the isospin symmetry breaking (ISB) in the nu-
clear medium due to Coulomb interaction and, to a lesser
extent, the other effects discussed below.

At present, nuclear Energy Density Functionals
(EDFs), based on the Density Functional Theory, consti-
tute the only theoretical framework in which the neutron
skins and the IAS energies can be consistently calculated
from a microscopic perspective, in medium-heavy nuclei
[21]. There exist different types of EDFs. In particular,
results from the Skyrme and covariant density dependent
type of functionals will be presented here. Those are based
on the Hartree-Fock (HF) and Hartree approaches, respec-
tively, for the desncription of ground-state properties; and,
self-consistently, on the charge-exchange Random Phase
Approximation (RPA) for the study of nuclear collective
excitations [22, 23].

Within the Skyrme functionals, SAMi [24] has been
shown to be specially accurate in the description of charge-
exchange resonances. In Refs. [1, 25], it is shown that
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… what is the density dependence of the symmetry energy?

Which nuclear properties are most sensitive to the symmetry energy?

Excitation energy of GDR, pygmy E1, IV GQR, neutron skin thickness…
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The recent high-resolution measurement of the electric dipole (E1) polarizability αD in 208Pb [A. Tamii et al.,
Phys. Rev. Lett. 107, 062502 (2011)] provides a unique constraint on the neutron-skin thickness of this nucleus.
The neutron-skin thickness rskin of 208Pb is a quantity of critical importance for our understanding of a variety
of nuclear and astrophysical phenomena. To assess the model dependence of the correlation between αD and
rskin, we carry out systematic calculations for 208Pb, 132Sn, and 48Ca based on the nuclear density functional
theory using both nonrelativistic and relativistic energy density functionals. Our analysis indicates that whereas
individual models exhibit a linear dependence between αD and rskin, this correlation is not universal when one
combines predictions from a host of different models. By averaging over these model predictions, we provide
estimates with associated systematic errors for rskin and αD for the nuclei under consideration. We conclude that
precise measurements of rskin in both 48Ca and 208Pb—combined with the recent measurement of αD—should
significantly constrain the isovector sector of the nuclear energy density functional.
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The Lead Radius Experiment (PREX) [1,2] at the Jefferson
Laboratory has recently determined the neutron root-mean-
square (rms) radius rn of 208Pb [3]. Parity-violating electron
scattering, a powerful technique used by the PREX collab-
oration, is particularly sensitive to the neutron distribution
because the neutral weak-vector boson couples preferentially
to the neutrons in the target [4]; the coupling to the proton is
suppressed by the weak mixing angle. In spite of the many
challenges that it faced, this purely electroweak measurement
may be interpreted with as much confidence as conventional
electromagnetic scattering experiments that have been used
for decades to accurately map the electric charge distribution
of the nucleus.

A quantity that is related to the neutron radius is the
neutron-skin thickness rskin = rn − rp, namely, the difference
between the rms neutron and proton radii. The importance of
the neutron skin lies in its strong sensitivity to the poorly
known isovector density ρ1 = ρn − ρp. Given that rskin is
a strong indicator of isovector properties, the determination
of rn of a heavy nucleus is a problem of fundamental
importance with far-reaching implications in areas as diverse
as nuclear structure [5–8], atomic parity violation [9], and
neutron-star structure [10,11]. By measuring the neutron form
factor of 208Pb at a moderate momentum transfer of q ≈
0.475 fm−1, and through an extrapolation to low-momentum
transfers [6,12], PREX was able to determine the following
values for the neutron radius and neutron-skin thickness:
rn = 5.78+0.16

−0.18 fm and rskin = 0.33+0.16
−0.18 fm [3].

Prompted by the implications of a measurement of rn,
interest in the use of hadronic probes to map the neutron

distribution has been revived. Of particular relevance are
experiments that employ antiprotonic atoms [13–15] and the
elastic scattering of protons [16,17]. Recent analyses from
such experiments have determined the neutron-skin thickness
of 208Pb to be rskin = 0.16 ± (0.02)stat ± (0.04)syst fm [14]
and rskin = 0.211+0.054

−0.063 fm [17]. Unfortunately, extraction of
rn from measurements based on hadronic probes is still a
subject of significant model dependence and large theoretical
uncertainties [18,19]. Moreover, elastic proton scattering is
highly insensitive to the isovector density as medium-energy
protons probe preferentially the isoscalar density [20]. So
while hadronic probes will continue to play a critical role in our
understanding of novel nuclear properties, the complementary
approach based on electroweak probes provides a clean and
largely model-independent alternative.

Another observable that is a strong indicator of isovector
properties is the electric dipole polarizability αD related to
the response of the nucleus to an externally applied electric
field. For stable medium-to-heavy nuclei with a moderate
neutron excess, the dipole response is largely concentrated
in the giant dipole resonance (GDR) of width 2–4 MeV
that exhausts almost 100% of the energy-weighted sum rule
[21]. For this isovector mode of excitation—perceived as
an oscillation of neutrons against protons—the symmetry
energy asym acts as the restoring force. Models with a soft
symmetry energy, namely, those that change slowly with
density, predict larger values for asym at the lower densities
of relevance to the excitation of this mode [22,23]. In this
context, the inverse energy-weighted E1 sum rule m−1—a
quantity directly proportional to αD—is of particular interest
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The paper is organized as follows. In Sec. II we introduce
the microscopic and macroscopic models used in this work.
In particular, we discuss some of the critical insights provided
by the macroscopic droplet model. In the next section results
are presented for the correlations between the electric dipole
polarizability and both the neutron skin thickness and the
parity-violating asymmetry. Finally, we offer our conclusions
in Sec. IV.

II. THEORETICAL FRAMEWORK

In the present section we introduce the theoretical formal-
ism that is used to compute the various observables studied
in this work. In particular, we briefly review the mean-field
plus random phase approximation (RPA) techniques used
to compute the distribution of isovector dipole strength.
Moreover, we make connection to the macroscopic droplet
model (DM) and discuss the critical insights that emerge from
such a simplified, yet powerful, description.

A. Microscopic models

For the theoretical calculations presented in this work
we use a set of nonrelativistic and relativistic self-consistent
mean-field models to predict ground-state properties of finite
nuclei at either the Hartree-Fock or Hartree levels, respectively.
These mean-field models have been accurately calibrated to fit
a certain set of ground-state data, such as binding energies
and charge radii of selected nuclei (including 208Pb) as well as
to a few empirical properties of infinite nuclear matter at, or
around, saturation density. To deal with dynamic properties
of the system, such as the electric dipole polarizability,
the models adopt the linearization of the time-dependent
Hartree or Hartree-Fock equations in a fully self-consistent
manner. That is, the residual interaction employed in the
calculation of the linear response is consistent with the one
used to generate the mean-field ground state. This technique
is widely known as the random phase approximation [18].
From the RPA calculations we obtain the distribution of the
electric dipole strength R(ω; E1) by considering the dipole
operator

D = Z

A

N∑

n=1

rnY1M (r̂n) − N

A

Z∑

p=1

rpY1M (r̂p), (1)

where N , Z, and A are the neutron, proton, and mass
numbers, respectively; rn(p) indicates the radial coordinate for
neutrons (protons); and Y1M (r̂) is the corresponding spherical
harmonic. Using this definition of the dipole operator allows
one to eliminate any contamination of the physical response
from the spurious state [18,19]. Further details about these
RPA calculations may be found in Refs. [9,15,17,20] and
references therein. Once the electric dipole strength R(ω; E1)
is determined as a function of the excitation energy ω, the
dipole polarizability αD can be computed as

αD = 8πe2

9

∫ ∞

0
ω−1R(ω; E1) dω = 8πe2

9
m−1(E1), (2)

where m−1(E1) is the sum of the inverse energy weighted
strength.

B. Macroscopic model

The RPA formalism described above suggests that the
extraction of the inverse energy weighted sum rule requires the
evaluation of the full distribution of dipole strength R(ω; E1).
However, given that only the m−1 moment is required—as
opposed to the full distribution of strength—a significantly
more efficient computation of the dipole polarizability relies
on the so-called dielectric theorem [21,22]. In this case, one
solves the ground-state problem associated with the model
Hamiltonian H under the constraint of a weak one-body term
of the form λD, where D is the dipole operator. That is, one
searches for the constrained wave function |λ〉 solution of
H′ = H + λD. The dielectric theorem establishes that the m−1
moment can be computed from the expectation value of the
Hamiltonian in the constrained ground state as

m−1(E1) = 1
2

∂2〈λ|H|λ〉
∂λ2

∣∣∣∣
λ=0

. (3)

Note that this represents an enormous simplification, as
the constrained energy may be obtained from a mean-field
calculation, without recourse to the RPA.

Applying the same type of procedure but solving the
constrained problem classically by using the DM approach
of Myers and Swiatecki [23], one obtains the following
result:

αDM
D = πe2

54
A〈r2〉

J

(
1 + 5

3
9J

4Q
A−1/3

)
, (4)

which was first derived by Meyer, Quentin, and Jennings [24].
In this equation 〈r2〉 is the mean-square radius of the nucleus,
J is the nuclear symmetry energy at saturation density, and Q
is the so-called surface stiffness coefficient, which measures
the resistance of neutrons against being separated from protons
[23].

It was shown in Ref. [25] using a large set of EDFs that the
ratio J/Q appearing in Eq. (4) is linearly related to the slope
of the symmetry energy at saturation density L. Moreover, the
DM gives the symmetry energy coefficient asym(A) of a finite
nucleus of mass number A as follows [23,26]:

asym(A) = J

1 + 9J
4Q

A−1/3
. (5)

Expanding Eq. (5) to first order in the “small” parameter
JA−1/3/Q [as was done in deriving Eq. (4)], we can write
Eq. (4) as

αDM
D ≈ πe2

54
A〈r2〉

J

(
1 + 5

3
J − asym(A)

J

)
. (6)

Given that the difference between J and asym(A) is directly
related to the surface symmetry energy, the above result reveals
that the electric dipole polarizability is sensitive to the ratio of
the surface and bulk nuclear symmetry energies [27].

The DM may also be used to provide an expression for
the neutron skin thickness in terms of a few bulk nuclear
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as it is highly sensitive to the density dependence of the
symmetry energy. This sensitivity suggests the existence of
a correlation: the larger rskin, the larger αD. Indeed, the
approximate proportionality of these two quantities is expected
based on both macroscopic arguments [24,25] and microscopic
calculations [8,26]. The recently completed high-resolution
( !p, !p′) measurement at the Research Center for Nuclear
Physics, Osaka University (RCNP) of the distribution of E1
strength in 208Pb over a wide range of excitation energy [27]
has, therefore, created considerable excitement. Of particular
relevance to our work is the precise value of the measured
electric dipole polarizability of 208Pb: αD = (20.1 ± 0.6) fm3.

The purpose of this Rapid Communication is fourfold. First,
we examine the robustness of the correlation between the
dipole polarizability and the neutron-skin thickness of 208Pb.
Second, in order to provide a meaningful estimate of rskin from
αD, we compute the associated systematic error. Third, we
predict αD in 48Ca and 132Sn with quantified uncertainties.
Finally, we assess the importance of the followup PREX
measurement of rskin in 48Ca.

Generally, to assess a linear correlation between two
observables A and B within one given model, one resorts
to a least-squares covariance analysis, with the correlation
coefficient

CAB = |"A"B|
√

"A2 "B2
, (1)

providing the proper statistical measure [28]. In Eq. (1)
the overline means an average over the statistical sample.
A value of |CAB | = 1 means that the two observables are
fully correlated whereas CAB = 0 implies that they are totally
uncorrelated. Recently, the statistical measure CAB was used
to study correlations between various nuclear observables [8]
in the context of the Skyrme SV-min model [29]. In particular,
it was concluded that good isovector indicators that strongly
correlate with the neutron radius of 208Pb are its electric dipole
polarizability as well as neutron skins and radii of neutron-rich
nuclei [8]. Indeed, by relying on the strong correlation between
αD and rskin (CAB = 0.98) predicted by such density functional
theory (DFT) calculations, Tamii et al. deduced a value of
0.156+0.025

−0.021 fm for the neutron-skin thickness of 208Pb.
However, the correlation coefficient CAB cannot assess

systematic errors that reflect constraints and limitations of
a given model [8]. Such systematic uncertainties can only
emerge by comparing different models (or sufficiently flexible
variants of a model) and this is precisely what has been done
in this Rapid Communication. To assess the linear dependence
between two observables A and B for a sample of several
models, the correlation coefficient Cmodels

AB is now obtained by
averaging over the predictions of those models. Although the
correlation coefficient Cmodels

AB determined in such a way may
not have a clear statistical interpretation, it is nevertheless an
excellent indicator of linear dependence.

To this end, we have computed the distribution of E1
strength using both relativistic and nonrelativistic DFT ap-
proaches with different energy density functionals (EDFs). In
all cases, these self-consistent models have been calibrated to
selected global properties of finite nuclei and some parameters

FIG. 1. (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and neutron-skin
thickness of 208Pb. Constrains on the neutron-skin thickness from
PREX [3] and on the dipole polarizability from RCNP [27] have
been incorporated into the plot.

of nuclear matter. Once calibrated, these models are used
without any further adjustment to compute the E1 strength
RE1 using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the inverse
energy-weighted sum [8,26,30]:

αD = 8π

9
e2

∫ ∞

0
ω−1RE1(ω)dω. (2)

The relation between αD and rskin for 208Pb is displayed
in Fig. 1 using the predictions from the 48 EDFs chosen
in this work. In particular, the up triangles mark predictions
from a broad choice of Skyrme EDFs that have been widely
used in the literature: SGII, SIII, SkI3, SkI4, SkM∗, SkO,
SkP, SkX, SLy4, SLy6 (see Refs. [31,32] for the original
references), Sk255 [33], BSk17 [34], LNS [35], and UNEDF0
and UNEDF1 [36]. In addition, we consider a collection of
relativistic and Skyrme EDFs that have been systematically
varied around an optimal model without a significant dete-
rioration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked in
Fig. 1 as NL3/FSU [26,37] (circles), DD-ME [38] (squares),
and Skyrme-SV [29] (down triangles). Note that the “stars”
in the figure are meant to represent the predictions from the
optimal models within the chain of systematic variations of the
symmetry energy. At first glance a clear (positive) correlation
between the dipole polarizability and the neutron skin is
discerned.

Yet, on closer examination, one observes a significant
scatter in the results, especially for the standard Skyrme
models. In particular, by including the predictions from all
the 48 EDFs considered here, the correlation Cmodels

AB = 0.77
is obtained. However, as seen in Table I, within each set of
the systematically varied models an almost perfect correlation
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We study the electric dipole polarizability αD in 208Pb based on the predictions of a large and representative
set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better
understand the correlations between αD and other isovector observables. Insights from the droplet model suggest
that the product of αD and the nuclear symmetry energy at saturation density J is much better correlated with
the neutron skin thickness "rnp of 208Pb than the polarizability alone. Correlations of αDJ with "rnp and
with the symmetry energy slope parameter L suggest that αDJ is a strong isovector indicator. Hence, we explore
the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our
theoretical predictions against measurements of both αD and the parity-violating asymmetry in 208Pb. We find
that the recent experimental determination of αD in 208Pb in combination with the range for the symmetry
energy at saturation density J = [31 ± (2)est] MeV suggests "rnp(208Pb) = 0.165 ± (0.009)expt ± (0.013)theor ±
(0.021)est fm and L = 43 ± (6)expt ± (8)theor ± (12)est MeV.

DOI: 10.1103/PhysRevC.88.024316 PACS number(s): 24.30.Cz, 25.30.Bf, 21.60.Jz, 21.65.Ef

I. INTRODUCTION

Experimental and theoretical studies of isospin sensitive
observables, such as the electric dipole polarizability, the
neutron skin thickness, and the parity-violating asymmetry,
are crucial for a better understanding of the isovector sector of
the nucleon-nucleon effective interaction and for constraining
present and future nuclear energy density functionals (EDFs)
[1–3]. The isovector properties of the nuclear equation of
state are governed by the nuclear symmetry energy. The
symmetry energy S(ρ) encodes the energy cost per nucleon in
converting all the protons into neutrons in symmetric nuclear
matter. Knowledge of the symmetry energy and of its density
dependence is critical for understanding many properties
of a variety of nuclear and astrophysical systems, such as
the ground- and excited-state properties of nuclei [4], many
aspects of heavy-ion collisions at different projectile-target
asymmetries [5], and the structure, composition, and dynamics
of neutron stars [6].

The electric dipole polarizability αD in 208Pb was recently
measured at the Research Center for Nuclear Physics (RCNP)
[1] via polarized proton inelastic scattering at forward angles.
This experimental technique allows the extraction of the

*xavier.roca.maza@mi.infn.it

electric dipole response in 208Pb over a wide energy range with
high resolution [1]. By taking the average of all available data
on the electric dipole polarizability in 208Pb [7,8], a value of
αD = 20.1 ± 0.6 fm3 was reported [1]. This value, in combina-
tion with the covariance analysis performed for a given Skyrme
functional [9], constrained the neutron skin thickness in 208Pb
to be "rnp = 0.156+0.025

−0.021 fm [1]. A subsequent systematic
study based on a large class of EDFs was able to confirm
the correlation between αD and "rnp [3]. This study extracted
a neutron skin thickness "rnp = 0.168 ± 0.022 fm using the
same experimental value of αD .

The purpose of this paper is threefold. First, we resort to a
macroscopic approach for describing the dipole polarizability,
which enables one to qualitatively understand, in a simple and
transparent way, the correlation between the electric dipole
polarizability and the parameters that characterize the nuclear
symmetry energy. Second, through a comprehensive ensemble
of microscopic calculations performed with different types of
EDFs [10–17] we provide a quantitative analysis which allows
to define the regions where the experiment and the adopted
microscopic approaches are compatible. Finally, the isospin
properties of the considered EDFs are further investigated by
the analysis of the dipole polarizability in combination with
the parity-violating asymmetry measured in polarized elastic
electron scattering.

024316-10556-2813/2013/88(2)/024316(7) ©2013 American Physical Society
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Recent improvements in the experimental determination of properties of the isovector giant quadrupole
resonance (IVGQR), as demonstrated in the A = 208 mass region, may be instrumental for characterizing
the isovector channel of the effective nuclear interaction. We analyze properties of the IVGQR in 208Pb, using
both macroscopic and microscopic approaches. The microscopic method is based on families of nonrelativistic
and covariant energy density functionals (EDF), characterized by a systematic variation of isoscalar and isovector
properties of the corresponding nuclear matter equations of state. The macroscopic approach yields an explicit
dependence of the nuclear symmetry energy at some subsaturation density, for instance S(ρ = 0.1 fm−3), or the
neutron skin thickness "rnp of a heavy nucleus, on the excitation energies of isoscalar and isovector GQRs.
Using available data it is found that S(ρ = 0.1 fm−3) = 23.3 ± 0.6 MeV. Results obtained with the microscopic
framework confirm the correlation of the "rnp to the isoscalar and isovector GQR energies, as predicted by the
macroscopic model. By exploiting this correlation together with the experimental values for the isoscalar and
isovector GQR energies, we estimate "rnp = 0.14 ± 0.03 fm for 208Pb, and the slope parameter of the symmetry
energy: L = 37 ± 18 MeV.
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I. INTRODUCTION

The isoscalar giant quadrupole resonance (ISGQR) was
discovered in the 1970s in inelastic electron and proton
scattering experiments [1–3]. (For an experimental review
we refer the reader to [4].) Whereas the features of the
low-lying quadrupole excitations depend on the number of
particles outside closed shells [5]—similarly to what occurs
for the low-energy peak appearing in the isoscalar dipole
response of neutron-rich nuclei [6]—the high-energy modes
are expected to vary smoothly with the mass number A.
In the case of the ISGQR, the excitation energy EIS

x can
be estimated—considering the nucleus a quantal harmonic
oscillator (QHO)—to be proportional to the shell energy-gap
h̄ω0 and, if the nuclear effective interaction is also velocity-
dependent, to the nucleon effective mass, namely

√
m/m∗

(cf. Ref. [7]). Because of this proportionality, the comparison
of microscopic self-consistent calculations with experiments
on the ISGQR has provided valuable information on the value
of m∗ [8], one of the most important quantities that characterize
nucleons embedded in the nuclear medium [9].

At variance with the ISGQR, its isovector counterpart has
remained elusive for quite a long time because of lack of selec-
tive experimental probes that can excite this resonance. The
accuracy in the experimental determination of the isovector
giant quadrupole resonance (IVGQR) has been considerably
improved only recently [10]. This important achievement will
enable future measurements in different mass regions. The
excitation energy of the IVGQR, EIV

x , is expected to vary
smoothly with A. Opposite to the ISGQR case, in the IVGQR
neutrons and protons oscillate out of phase. Within the QHO
assumption, the excitation energy of the high energy isovector
mode should be correlated both with the shell gap (h̄ω0) and

with the symmetry energy, as discussed below. Even though
the symmetry energy S(ρ) is a basic component of the nuclear
matter equation of state, it is still significantly undetermined
[11–14]. At saturation density the symmetry energy is usually
expressed in terms of its value, J = S(ρ∞), and density slope,
L = 3ρ∞∂ρS(ρ)|ρ∞ . Also in the IVGQR case, for velocity de-
pendent potentials parametrized in terms of an effective mass,
the shell gap is modified as follows: h̄ω0 →

√
m/m∗h̄ω0.

In Sec. II the theoretical basis of the nonrelativistic Skyrme
and covariant energy density functionals (EDFs) is briefly
presented. The formalism used in the present calculations
is also outlined: mainly the random phase approximation
(RPA), and to some extent the features of the particle vibration
coupling (PVC) approach. Section III is divided into two parts.
In Sec. III A we analyze the strength functions and transition
densities of the ISGQR and IVGQR in 208Pb. In addition, the
width of the IVGQR is evaluated using the PVC method. In
Sec. III B we derive a macroscopic model for the dynamics of
the IVGQR. A detailed analysis of excitation energies of the
ISGQR and IVGQR is performed employing two families of
EDFs. Section IV summarizes the results and conclusions.

II. FORMALISM

A. Mean field

Self-consistent mean-field (SCMF) approaches to nuclear
structure have become increasingly complex and accurate.
They represent an approximate realization of density func-
tional theory (DFT) for atomic nuclei. This theory has
been extensively applied to electronic systems, based on
the self-consistent Kohn-Sham scheme [15–17]. In nuclear
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The information on the symmetry energy and its density dependence is deduced by comparing the available
data on the electric dipole polarizability αD of 68Ni, 120Sn, and 208Pb with the predictions of the random-phase
approximation, using a representative set of nuclear energy density functionals. The calculated values of αD

are used to validate different correlations involving αD , the symmetry energy at the saturation density J , the
corresponding slope parameter L, and the neutron skin thickness "rnp , as suggested by the droplet model. A
subset of models that reproduce simultaneously the measured polarizabilities in 68Ni, 120Sn, and 208Pb are
employed to predict the values of the symmetry energy parameters at saturation density and "rnp . The resulting
intervals are J =30–35 MeV, L=20–66 MeV; and the values for "rnp in 68Ni, 120Sn, and 208Pb are in the
ranges 0.15–0.19, 0.12–0.16, and 0.13–0.19 fm, respectively. The strong correlation between the electric dipole
polarizabilities of two nuclei is instrumental to predict the values of electric dipole polarizabilities in other nuclei.
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I. INTRODUCTION

The density dependence of the nuclear symmetry energy
plays a critical role in nuclear physics and astrophysics and
it is extensively investigated from both theoretical and experi-
mental perspectives. Given that the nuclear symmetry energy
is not an observable which can be directly measured, many
experiments that measure closely related observables have
been designed to extract information about this fundamental
quantity. In particular, the neutron skin thickness and the
electric dipole polarizability of nuclei have been identified as
strong isovector indicators [1]. The main focus of the present
work is the electric dipole response.

Different experimental techniques, such as photoabsorp-
tion, Coulomb excitation, and proton scattering at very forward
angles (where the Coulomb interaction dominates), have
been employed to probe the electric dipole response [2–4].
These electromagnetic reactions are particularly suited for this
purpose because, unlike hadronic experiments, they are not
hindered by large and uncontrolled uncertainties. In addition
to the identification of the prominent giant dipole resonance
(GDR), the electric dipole response of neutron-rich nuclei
displays a smaller concentration of strength at lower energies
that is commonly referred to as the pygmy dipole strength
(PDS) [5]. Data on the PDS have been used in the past to
constrain the symmetry energy and to obtain information on
the neutron skin thickness of neutron-rich nuclei [6–11]. In
one of the earliest applications of uncertainty quantification
to the domain of energy density functionals (EDFs), Reinhard
and Nazarewicz carried out a covariance analysis to correlate
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the neutron skin thickness of 208Pb to the properties of both
finite nuclei and infinite nuclear matter [1]. In this way, the
electric dipole polarizability, an observable directly related
to the inverse energy-weighted sum rule, was identified as a
strong isovector indicator that may be used to constrain the
neutron skin thickness of 208Pb.

The electric dipole polarizability of 208Pb was measured
at the Research Center for Nuclear Physics (RCNP) [12]
using polarized proton inelastic scattering at forward angles.
By performing a multipole decomposition of the angular
distribution and by measuring all polarization transfer observ-
ables, it was possible to extract by two independent methods
the electric dipole response of 208Pb over a wide range of
energies and with high resolution. Taking into account the
average of all available data on the electric dipole response
in 208Pb up to the pion-production threshold [13,14], a
value for the electric dipole polarizability of αD(208Pb) =
20.1 ± 0.6 fm3 was reported [12]. Based on the success of
the 208Pb experiment, the electric dipole strength of 120Sn
was recently measured at RCNP in the interval between 5
and 22 MeV [15]. By combining this new measurement with
existing photoabsorption data up to 135 MeV [16], a value
of αD(120Sn) = 8.93 ± 0.36 fm3 was obtained [15]. Finally,
turning to exotic nuclei, the electric dipole response of the
unstable 68Ni isotope has been recently investigated at GSI
using both Coulomb excitation in inverse kinematics and by
measuring the invariant mass in the one- and two-neutron
decay channels [17,18]. From these measurements, which
cover the range between 7.8 and 28.4 MeV, both the giant
and pygmy dipole strengths have been identified and the
dipole polarizability of αD(68Ni) = 3.40 ± 0.23 fm3 has been
obtained [18]. Note that neither the high- nor the low-energy
tails of the dipole response of 68Ni are experimentally known,
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We analyze and propose a solution to the apparent inconsistency between our current knowledge of the
equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy
nucleus such as 208Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by
performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that
include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction
that is successful in reproducing the IAS excitation energy without compromising other properties of
finite nuclei.
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The nuclear physics community has been striving for
quite some time to determine the symmetry energy, and in
particular, its density dependence [1]. The symmetry
energy is the energy per particle needed to change protons
into neutrons in uniform matter at a given density ρ. At
saturation density of symmetric matter ρ0 ≈ 0.16 fm−3, its
value is between 29 and 32.7 MeV [2] or between 30.7 and
32.5 MeV [3] if one performs a weighted average of various
extractions, but a broader interval, namely, 28.5–34.5 MeV,
has been extracted in Ref. [4] (cf. also Ref. [5]). In short, we
still do not know precisely the value of the symmetry
energy at saturation density, and, as we argue below, its
density dependence is even more uncertain.
A deeper understanding would be highly needed because

the accurate characterization of the symmetry energy
entails profound consequences for the study of the neutron
distributions in nuclei along the whole nuclear chart, as
well as for other properties of neutron-rich nuclei [1]. Its
knowledge impacts heavy-ion reactions where the neutron-
proton imbalance varies between the incoming and out-
going interacting nuclei [6]. The symmetry energy is also of
paramount importance for understanding the properties of
compact objects like neutron stars: it directly impacts, for
instance, the determination of the radius of a low-mass
neutron star [7], and it is also crucial for understanding stars
with a larger mass where the physics of nuclear matter
above saturation density also enters. Neutron star physics
has received a new strong boost very recently, as the LIGO-
Virgo Collaboration announced the first detection of
gravitational waves from a binary neutron star merger,
setting a new type of constraint on the radius of a neutron
star [8]. Neutron star mergers are also a promising site for

the r-process nucleosynthesis [9], in which the symmetry
energy plays again a substantial role, since the r-process path
is governed by the mass of neutron-rich nuclei as well as by
their beta decays. Last but not least, the knowledge of the
nuclear symmetry energy is relevant for standard model tests
via atomic parity violation, as shown, e.g., in Ref. [10].
If β is the local neutron-proton asymmetry β≡

ðρn − ρpÞ=ρ, the energy per particle ðE=AÞ in matter having
neutron-proton imbalance is a function of ρ and β.
Such a function can be expanded in even powers of β
owing to isospin symmetry (the Coulomb force has to
be taken out when dealing with a uniform system). By
retaining only the quadratic term, we can write

E
A
ðρ; βÞ ¼ E

A
ðρ; β ¼ 0Þ þ SðρÞβ2: ð1Þ

This equation defines the symmetry energy SðρÞ, that is, the
difference between the energy per particle E=A in neutron
and symmetric matter. Equation (1) clearly explains why an
accurate knowledge of the symmetry energy is mandatory
in order to establish a link between the physics of finite
nuclei and that of a neutron star.
The symmetry energy can be expanded around

saturation density as SðρÞ ¼ J þ Lðρ − ρ0Þ=3ρ0þ
½Ksymðρ − ρ0Þ2=9ρ20 þ % % %, where different parameters
have been defined, namely, J ≡ Sðρ0Þ, L≡ 3ρ0S0ðρ0Þ,
and Ksym ≡ 9ρ20S

00ðρ0Þ. On these parameters, much atten-
tion has been focused. While Ksym is basically not known,
the error on L referred to as the “slope parameter” is
believed to be still significantly larger than the error on J:
ranges between 40 and 75 MeVor between 30 and 90 MeV
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The nuclear physics community has been striving for
quite some time to determine the symmetry energy, and in
particular, its density dependence [1]. The symmetry
energy is the energy per particle needed to change protons
into neutrons in uniform matter at a given density ρ. At
saturation density of symmetric matter ρ0 ≈ 0.16 fm−3, its
value is between 29 and 32.7 MeV [2] or between 30.7 and
32.5 MeV [3] if one performs a weighted average of various
extractions, but a broader interval, namely, 28.5–34.5 MeV,
has been extracted in Ref. [4] (cf. also Ref. [5]). In short, we
still do not know precisely the value of the symmetry
energy at saturation density, and, as we argue below, its
density dependence is even more uncertain.
A deeper understanding would be highly needed because

the accurate characterization of the symmetry energy
entails profound consequences for the study of the neutron
distributions in nuclei along the whole nuclear chart, as
well as for other properties of neutron-rich nuclei [1]. Its
knowledge impacts heavy-ion reactions where the neutron-
proton imbalance varies between the incoming and out-
going interacting nuclei [6]. The symmetry energy is also of
paramount importance for understanding the properties of
compact objects like neutron stars: it directly impacts, for
instance, the determination of the radius of a low-mass
neutron star [7], and it is also crucial for understanding stars
with a larger mass where the physics of nuclear matter
above saturation density also enters. Neutron star physics
has received a new strong boost very recently, as the LIGO-
Virgo Collaboration announced the first detection of
gravitational waves from a binary neutron star merger,
setting a new type of constraint on the radius of a neutron
star [8]. Neutron star mergers are also a promising site for

the r-process nucleosynthesis [9], in which the symmetry
energy plays again a substantial role, since the r-process path
is governed by the mass of neutron-rich nuclei as well as by
their beta decays. Last but not least, the knowledge of the
nuclear symmetry energy is relevant for standard model tests
via atomic parity violation, as shown, e.g., in Ref. [10].
If β is the local neutron-proton asymmetry β≡

ðρn − ρpÞ=ρ, the energy per particle ðE=AÞ in matter having
neutron-proton imbalance is a function of ρ and β.
Such a function can be expanded in even powers of β
owing to isospin symmetry (the Coulomb force has to
be taken out when dealing with a uniform system). By
retaining only the quadratic term, we can write

E
A
ðρ; βÞ ¼ E

A
ðρ; β ¼ 0Þ þ SðρÞβ2: ð1Þ

This equation defines the symmetry energy SðρÞ, that is, the
difference between the energy per particle E=A in neutron
and symmetric matter. Equation (1) clearly explains why an
accurate knowledge of the symmetry energy is mandatory
in order to establish a link between the physics of finite
nuclei and that of a neutron star.
The symmetry energy can be expanded around

saturation density as SðρÞ ¼ J þ Lðρ − ρ0Þ=3ρ0þ
½Ksymðρ − ρ0Þ2=9ρ20 þ % % %, where different parameters
have been defined, namely, J ≡ Sðρ0Þ, L≡ 3ρ0S0ðρ0Þ,
and Ksym ≡ 9ρ20S

00ðρ0Þ. On these parameters, much atten-
tion has been focused. While Ksym is basically not known,
the error on L referred to as the “slope parameter” is
believed to be still significantly larger than the error on J:
ranges between 40 and 75 MeVor between 30 and 90 MeV
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FIG. 1. (Color online) (a) Dipole polarizability against the neutron skin thickness in 208Pb predicted by modern nuclear EDFs [10–17]. A
correlation coefficient of r = 0.62 is found. (b) Dipole polarizability times the symmetry energy at saturation of each model against the neutron
skin thickness in 208Pb predicted by the same EDFs of panel (a). The linear fit gives 10−2αDJ = (3.01 ± 0.32) + (19.22 ± 0.73)"rnp with a
correlation coefficient r = 0.97, and the two shaded regions represent the 99.9% and 70% confidence bands.

skin thickness of 208Pb:

"rnp = 0.165 ± (0.009)expt ± (0.013)theor ± (0.021)est fm.

(13)

We labeled the uncertainty derived from the different estimates
on J as “est” because it contains uncertainties coming from
both experimental and theoretical analyses, which are often not
easy to separate. In addition, we use a different label to keep
track of the magnitude of the various uncertainties. Finally,
we note that the above result for the neutron skin thickness of
208Pb is in agreement with previous estimates [1–4,11,33].

Given the strong correlation between the neutron skin
thickness of 208Pb and the slope of the symmetry energy L,
one expects that the strong correlation between αDJ and "rnp

will extend also to L. Moreover, based on the DM insights
summarized in Eq. (11), we display in Fig. 2 the microscopic
predictions for αDJ as a function of L for the same models
depicted in Fig. 1. The correlation between αDJ and L is of
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FIG. 2. (Color online) Dipole polarizability in 208Pb times the
symmetry energy at saturation as a function of the slope parameter L.
The same EDFs [10–17] of Fig. 1 are used. The linear fit gives
10−2αDJ = (4.80 ± 0.04) + (0.033 ± 0.001)L with a correlation
coefficient r = 0.96, and the two shaded regions represent the 99.9%
and 70% confidence bands.

particular interest since it provides a direct relation between
J and L via the high-precision measurement of the electric
dipole polarizability. Specifically, we obtain

L = −146 ± (1)theor + [6.11 ± (0.18)expt ± (0.26)theor]J,

(14)

where both J and L are expressed in MeV. In particular,
adopting as before a value of J = [31 ± (2)est] MeV, the above
equation translates into the following constraint on L:

L = 43 ± (6)expt ± (8)theor ± (12)est MeV. (15)

Our results show that the analytical formulas (8) and (11)
reproduce the trends of the employed microscopic models.
For completeness, we now evaluate the quantitative accuracy
of these macroscopic formulas in reproducing the present
self-consistent results. In doing so, we use the microscopic
predictions for the different quantities appearing in the right-
hand side of Eqs. (8) and (11) and calculate αD by using the two
macroscopic expressions. As a result, compared with the actual
self-consistent values of αD , we find that Eqs. (8) and (11) are
accurate within 10% and 12% on average, respectively.

We conclude this section by noting that the analysis
presented here may be systematically extended to other heavy
nuclei if αD is experimentally known. This could tighten the
constraint between J and L.

B. The dipole polarizability and the parity-violating
asymmetry in 208Pb

The parity-violating asymmetry in the elastic scattering of
high-energy polarized electrons from 208Pb was recently mea-
sured at low momentum transfer at the Jefferson Laboratory by
the Lead Radius Experiment (PREX) Collaboration [2]. The
parity-violating asymmetry is defined as the relative difference
between the differential cross sections of ultrarelativistic
elastically scattered electrons with positive and negative
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We labeled the uncertainty derived from the different estimates
on J as “est” because it contains uncertainties coming from
both experimental and theoretical analyses, which are often not
easy to separate. In addition, we use a different label to keep
track of the magnitude of the various uncertainties. Finally,
we note that the above result for the neutron skin thickness of
208Pb is in agreement with previous estimates [1–4,11,33].

Given the strong correlation between the neutron skin
thickness of 208Pb and the slope of the symmetry energy L,
one expects that the strong correlation between αDJ and "rnp

will extend also to L. Moreover, based on the DM insights
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predictions for αDJ as a function of L for the same models
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particular interest since it provides a direct relation between
J and L via the high-precision measurement of the electric
dipole polarizability. Specifically, we obtain

L = −146 ± (1)theor + [6.11 ± (0.18)expt ± (0.26)theor]J,

(14)

where both J and L are expressed in MeV. In particular,
adopting as before a value of J = [31 ± (2)est] MeV, the above
equation translates into the following constraint on L:

L = 43 ± (6)expt ± (8)theor ± (12)est MeV. (15)

Our results show that the analytical formulas (8) and (11)
reproduce the trends of the employed microscopic models.
For completeness, we now evaluate the quantitative accuracy
of these macroscopic formulas in reproducing the present
self-consistent results. In doing so, we use the microscopic
predictions for the different quantities appearing in the right-
hand side of Eqs. (8) and (11) and calculate αD by using the two
macroscopic expressions. As a result, compared with the actual
self-consistent values of αD , we find that Eqs. (8) and (11) are
accurate within 10% and 12% on average, respectively.

We conclude this section by noting that the analysis
presented here may be systematically extended to other heavy
nuclei if αD is experimentally known. This could tighten the
constraint between J and L.

B. The dipole polarizability and the parity-violating
asymmetry in 208Pb

The parity-violating asymmetry in the elastic scattering of
high-energy polarized electrons from 208Pb was recently mea-
sured at low momentum transfer at the Jefferson Laboratory by
the Lead Radius Experiment (PREX) Collaboration [2]. The
parity-violating asymmetry is defined as the relative difference
between the differential cross sections of ultrarelativistic
elastically scattered electrons with positive and negative

024316-4

 Dipole polarizability vs neutron skin thickness of 208Pb

X. ROCA-MAZA et al. PHYSICAL REVIEW C 92, 064304 (2015)

100 150 200 250 300 350
αD(

68
Ni) J αD(

120
Sn) J

500

600

700

800

900

α D
(20

8 Pb
) 

J 
 (

M
eV

 f
m

3 )

r = 0.99 r = 0.99 (a)

100 125 150 175
αD(

68
Ni) J  (MeV fm

3
)

250

300

350

400

α D
(12

0 Sn
) 

J 
 (

M
eV

 f
m

3 ) Skyrmes
SAMi-J
KDE0-J
DD-ME

r = 0.98 (b)

FIG. 3. (Color online) (a) The product αDJ in 208Pb against the same product in 68Ni and 120Sn; in both cases the resulting correlation
coefficients are exceptionally high (r =0.99). The deduced linear fits give αD(208Pb)J = (16 ± 2) + (4.7 ± 0.1)αD(68Ni)J and αD(208Pb)J =
(−42 ± 4) + (2.4 ± 0.1)αD(120Sn)J . (b) Same as for panel (a) but for the pair 120Sn -68Ni with a correlation coefficient of r = 0.98. The linear
fit gives αD(120Sn)J = (16 ± 2) + (2.1 ± 0.1)αD(68Ni)J .

number of nuclei is within reach—the need for an accurate de-
termination of J is pressing. Thus, in the following we explore
the possibility of constraining J , L, and "rnp by comparing
the theoretical results to the measured values of the electric
dipole polarizability in 68Ni, 120Sn, and 208Pb. Further, these
constraints are exploited later so that bona fide theoretical
predictions are provided for the electric dipole polarizabil-
ity of 48Ca and 90Zr, both currently under experimental
consideration.

Although scaling αD by J yields a dramatic improvement
in its correlation to "rnp (see Fig. 1), the impact of such scaling
in correlating αD in two different nuclei is far less dramatic.
That is, it is possible to estimate the neutron skin thicknesses
of 68Ni, 120Sn, and 208Pb without invoking the empirical
value of the symmetry energy J . To do so, we identify the
subset of accurately calibrated EDFs—out of the large set
that we have been employing so far—that simultaneously
reproduce the electric dipole polarizability in 68Ni, 120Sn,
and 208Pb. These EDFs, which in addition to the electric
dipole polarizability reproduce ground-state properties over

the entire nuclear chart, provide definite predictions for the
neutron skin thickness of the three nuclei, as well as for
the two fundamental parameters of the symmetry energy: J
and L. This approach—now widely adopted by the theoretical
community—is reminiscent of a philosophy first proposed by
Blaizot and collaborators, who advocate a purely microscopic
approach for the extraction of nuclear matter parameters (e.g.,
compression modulus) from the dynamics of giant resonances
(i.e., the nuclear breathing mode) [54]. While the merit of
macroscopic formulas for obtaining qualitative information is
unquestionable, the field has attained a level of maturity that
demands stricter standards: It is now expected that microscopic
models predict simultaneously the strength distribution as well
as the properties of nuclear matter.

We display in Figs. 4(a) and 4(b) the electric dipole
polarizability of 208Pb versus those of 68Ni and 120Sn,
predicted by the RPA calculation with the set of EDFs used
in this work. From the two panels it is seen that αD in 208Pb
remains strongly correlated to αD in both 68Ni and 120Sn,
although the correlation weakens slightly by removing the
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FIG. 4. (Color online) Comparison of the theoretical results for the dipole polarizability with the experimental data. (a) 68Ni (3.88 ±
0.31 fm3) and 208Pb (19.6 ± 0.6 fm3, taking into account the subtraction of the quasideuteron excitations 0.51 ± 0.15 fm3). The linear fit gives
αD(208Pb) = (−0.5 ± 0.5) + (5.0 ± 0.2)αD(68Ni) and a correlation coefficient r = 0.96. (b) 120Sn (8.59 ± 0.37 fm3, taking into account the
subtraction of the quasideuteron excitations 0.34 ± 0.08 fm3) and 208Pb. The linear fit gives αD(208Pb) = (0.1 ± 0.5) + (2.2 ± 0.1)αD(120Sn)
and a correlation coefficient r = 0.96. The symbols that are circled in red (gray) correspond to the models that are compatible with experiments
on the dipole polarizability in 68Ni, 120Sn, and 208Pb.
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of various experiments [52,53]. The range for the slope of the
symmetry energy L predicted by the subset of selected EDFs
lies at the lower end of accepted values when compared to
other analysis (see, e.g., Refs. [55–57]), yet it is consistent
with studies involving giant resonances [58]. We emphasize
that the limits deduced in the present work follow from
the analysis of relatively clean electromagnetic experiments.
Future electroweak measurements will help narrow these
intervals even further.

Given the strong correlation between the neutron skin
thickness of a neutron-rich nucleus and the slope of the
symmetry energy L [32,35,59], it is reasonable to expect that
the αDJ -"rnp correlation will extend to the αDJ -L case, as it
has been explicitly shown for 208Pb; see Fig. 2 of Ref. [20],
where a correlation αD(208Pb)J = (480 ± 4) + (3.3 ± 0.1)L
with r = 0.96 was found. Note that this correlation is also
consistent with the DM estimate of αD (cf. Eq. (11) of Ref.
[20]). The relation between J and L extracted from this
correlation, assuming the experimental value of αD(208Pb) =
19.6 ± 0.6 fm3, is

J = (24.5 ± 0.8) + (0.168 ± 0.007)L. (12)

The same can be done for 68Ni and 120Sn, obtaining in both
cases a high correlation for αDJ − L with r = 0.96. Assuming
the experimental values for αD in these two nuclei, we find

J = (24.9 ± 2.0) + (0.19 ± 0.02)L, (13)

J = (25.4 ± 1.1) + (0.17 ± 0.01)L, (14)

respectively. We exhibit these constraints as bands in a J − L
plot in Fig. 5. In addition, we display the predictions of the
EDFs employed in this work, highlighting those that reproduce
the experimental αD in 68Ni, 120Sn, and 208Pb with red (gray)
circles.3 Our analysis, together with the experimental data on
the polarizabilities, predicts three compatible bands with very
similar slopes. On the one side, the point of interception with
the vertical axis is essentially the same within the error bars
(average value of ≈24.9 MeV). This is because it represents
the symmetry energy at some average subsaturation density
〈ρ〉 that has been probed in αD experiments [12,15,18]. To
qualitatively understand this, we expand the symmetry energy
S(ρ) around the nuclear saturation density ρ0 as S(ρ) =
J − Lε + O[ε2], where ε ≡ (ρ0 − ρ)/3ρ0. Comparing this
expansion with Eqs. (12)–(14)—that have the form J =
a + bL—one can immediately recognize that the a found
in the analysis is approximately equal to S(〈ρ〉) and that b
allows us to roughly estimate the value of 〈ρ〉. Of course, this
interpretation is only valid for small values of b. On the other
side, the slope of such bands is clearly different from the one
depicted by the EDF models. This feature may point towards
a possible deficiency in current EDFs: Data on αD impose that

3As an example, the interaction KDE0-J32 with J = 32 MeV and
L = 40 MeV is compatible with the three bands but not with the
experiment on αD(208Pb). Other interactions depicted in black and
compatible with the bands were not tested for the case of 120Sn.
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FIG. 5. (Color online) J vs L plot showing the constraints ob-
tained in Eqs. (12)–(14). We also display the predictions of the EDFs
employed in this work. We highlight the models that reproduce the
experimental αD in 68Ni, 120Sn, and 208Pb by using red (gray) circles.

a model with a large value of J will need to predict a smaller
value of L when compared to the current trend in EDFs.

B. 48Ca and 90Zr

Experiments that measure the electric dipole polarizability
of a variety of stable and unstable nuclei are carried out and
being planned at RCNP and GSI. In particular, the measure-
ment of αD for both 48Ca and 90Zr is forthcoming. Hence, we
now apply the technique developed in the previous section to
make genuine predictions for the electric dipole polarizability,
as well as the neutron skin thickness for both nuclei. Note,
however, that the type of corrections discussed in Sec. II B may
need to be applied before comparing the measured values of
the dipole polarizability to the corresponding RPA predictions.

The fact that the product of the electric dipole polarizability
with the symmetry energy is better correlated to the neutron
skin thickness than the polarizability alone seems to be
a consistent result that has been verified in medium- and
heavy-mass nuclei. However, in general, one expects that
this type of correlation may weaken for light nuclei where
giant resonances are usually wider and more fragmented than
in heavy nuclei. This may affect moments derived from the
strength distribution, such as the electric dipole polarizability.

To test this assertion we display in Figs. 6(a) and 6(b) the
correlation between αD in 48Ca and 90Zr, respectively, versus
the electric dipole polarizability in 208Pb for the large set of
EDFs employed in this work. Similarly, the two lower panels,
Figs. 6(c) and 6(d), display the αDJ - "rnp correlations in 48Ca
and 90Zr, respectively. As in the previous subsection we find
that both of the upper panels display a linear correlation that
may be fitted as follows:

αD(48Ca) = (0.36 ± 0.07) + (0.10 ± 0.01)αD(208Pb), (15)

αD(90Zr) = (1.1 ± 0.1) + (0.24 ± 0.02)αD(208Pb), (16)

with the correlation coefficients of 0.82 for 48Ca and 0.91 for
90Zr, respectively. As in the case shown in Fig. 3, we have
also calculated the scaled-J correlations (not plotted here)
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so their contribution was not taken into account in the
published value of the polarizability.

As already suggested, the electric dipole polarizability may
be used to constrain the neutron skin thickness of 208Pb—and
ultimately the density dependence of the symmetry energy.
In particular, the experimental determination of αD(208Pb),
combined with a covariance analysis performed with an
optimized Skyrme functional (SV-min), predicted a neutron
skin thickness in 208Pb "rnp =0.156+0.025

−0.021 fm [12]. In a
subsequent systematic study performed with a large ensemble
of both nonrelativistic and relativistic EDFs, a neutron skin
thickness "rnp =0.168 ± 0.022 fm was estimated [19]. By
using relations deduced from the droplet model (DM), it
was noted that the neutron skin thickness is correlated more
strongly with the product of the electric dipole polarizability
and the symmetry energy coefficient at saturation density
(J ) than to the dipole polarizability alone [20]. Using this
correlation—and some plausible estimates for J—a value of
"rnp =0.165 ± 0.026 fm was obtained [20]. Given the strong
correlation between the neutron skin thickness of 208Pb and
the slope L of the symmetry energy at saturation density,
these results favor a relatively soft symmetry energy with
L " 40 MeV, even with fairly large error bars.

Our aim in this paper is to extract possible constraints
on the neutron skin thickness and the symmetry energy
parameters by means of a combined analysis of all three
recent measurements of the electric dipole polarizability in
68Ni, 120Sn, and 208Pb. To start, we perform self-consistent
microscopic calculations of the electric dipole polarizability of
all three nuclei in random phase approximation (RPA) using a
comprehensive set of EDFs. When required, as in the case of
120Sn, pairing correlations in open-shell nuclei are included
by using the quasiparticle RPA (QRPA) framework [21].
The calculated values of the electric dipole polarizability are
then used to validate the correlation between αDJ , the slope
of the symmetry energy L, and the neutron skin thickness
"rnp, as suggested by the DM formula. Having validated
these correlations, we then confront our theoretical predictions
against the experimental information in order to select a subset
of EDFs that reproduce simultaneously the electric dipole
polarizability in all three aforementioned nuclei. Finally, using
these selected models we obtain estimates for the neutron skin
thicknesses of 68Ni, 120Sn, and 208Pb, as well as constraints
on the symmetry energy parameters. We should emphasize that
the experimental values of the electric dipole polarizability for
120Sn and 208Pb contain a small, yet non-negligible, amount
of contamination at higher energies caused by nonresonant
processes; the so-called quasideuteron effect [13,16]. To be
able to directly compare the measured values of αD against
our theoretical predictions, these contributions have to be
subtracted from the experimental strength. The contributions
from the quasideuteron effect were recently determined [22],
so the present analysis uses for the first time the corrected
values of the measured αD to determine the corresponding
neutron skin thickness of both 120Sn and 208Pb.

The paper is organized as follows. In Sec. II we present a
short review of the RPA formalism used to compute the electric
dipole response. A brief discussion of the DM approach to the
electric dipole polarizability and the correlations suggested

by it are also addressed. Particularly important is the connec-
tion between the extracted experimental dipole polarizability
(minus the quasideuteron contribution) and the corresponding
theoretical results. Next, we discuss in Sec. III predictions for
the electric dipole polarizability of 68Ni, 120Sn, and 208Pb,
obtained using a large and representative set of EDFs. In turn,
values of the neutron skin thickness for these nuclei and the
associated symmetry energy parameters are estimated from
the subset of EDFs which reproduce the data on αD for all
three nuclei. We then exploit these findings to provide genuine
predictions for the electric dipole polarizability of both 48Ca
and 90Zr, nuclei planned to be experimentally investigated in
the near future. Finally, we offer our conclusions in Sec. IV.

II. FORMALISM

A. Theoretical concepts

The theoretical description of dynamical properties of
nuclear systems, such as the electric dipole polarizability,
is usually based on the linearization of the time-dependent
Hartree or Hartree-Fock (HF) equations in a fully self-
consistent way. This means that the residual interaction used
to compute the linear response of the nuclear system to an
external probe is consistent with the interaction used to gener-
ate the mean-field ground state. This technique is commonly
known as the random phase approximation (RPA) [21] and
is considered to represent an approximate realization of the
small amplitude limit of time-dependent density functional
theory. This formalism has been extended to include pairing
correlations in the quasiparticle random phase approximation
(QRPA). In the present work and for nonrelativistic models, we
employ a HF-BCS-based approach with the same zero-range,
surface pairing force that was used in Ref. [23], and that
gives a reasonable reproduction of the experimental odd-even
mass differences in the Sn isotopic chain. For the relativistic
counterpart we use the finite-range Gogny force D1S in the
particle-particle channel [24].

The electric dipole strength R(ω; E1) is evaluated within
the (Q)RPA framework using the dipole operator

D = Z

A

N∑

n=1

rnY1M (r̂n) − N

A

Z∑

p=1

rpY1M (r̂p), (1)

where N , Z, and A are the neutron, proton, and mass
numbers, respectively; rn(p) indicates the radial coordinate for
neutrons (protons); and Y1M (r̂) is the corresponding spherical
harmonic. This definition of the dipole operator eliminates
contaminations to the physical response due to the spurious
excitation of the center of mass. Details about nuclear (Q)RPA
calculations can be found in Refs. [1,6,25,26].

With the electric dipole strength as a function of the
excitation energy ω, the dipole polarizability αD may be
computed as follows:

αD = 8πe2

9

∫ ∞

0
ω−1R(ω; E1) dω = 8πe2

9
m−1(E1), (2)

where m−1(E1) is the inverse energy-weighted sum rule. Note
that although the m−1 moment may be obtained from (Q)RPA
calculations, the so-called dielectric theorem [27–29] also
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The nuclear physics community has been striving for
quite some time to determine the symmetry energy, and in
particular, its density dependence [1]. The symmetry
energy is the energy per particle needed to change protons
into neutrons in uniform matter at a given density ρ. At
saturation density of symmetric matter ρ0 ≈ 0.16 fm−3, its
value is between 29 and 32.7 MeV [2] or between 30.7 and
32.5 MeV [3] if one performs a weighted average of various
extractions, but a broader interval, namely, 28.5–34.5 MeV,
has been extracted in Ref. [4] (cf. also Ref. [5]). In short, we
still do not know precisely the value of the symmetry
energy at saturation density, and, as we argue below, its
density dependence is even more uncertain.
A deeper understanding would be highly needed because

the accurate characterization of the symmetry energy
entails profound consequences for the study of the neutron
distributions in nuclei along the whole nuclear chart, as
well as for other properties of neutron-rich nuclei [1]. Its
knowledge impacts heavy-ion reactions where the neutron-
proton imbalance varies between the incoming and out-
going interacting nuclei [6]. The symmetry energy is also of
paramount importance for understanding the properties of
compact objects like neutron stars: it directly impacts, for
instance, the determination of the radius of a low-mass
neutron star [7], and it is also crucial for understanding stars
with a larger mass where the physics of nuclear matter
above saturation density also enters. Neutron star physics
has received a new strong boost very recently, as the LIGO-
Virgo Collaboration announced the first detection of
gravitational waves from a binary neutron star merger,
setting a new type of constraint on the radius of a neutron
star [8]. Neutron star mergers are also a promising site for

the r-process nucleosynthesis [9], in which the symmetry
energy plays again a substantial role, since the r-process path
is governed by the mass of neutron-rich nuclei as well as by
their beta decays. Last but not least, the knowledge of the
nuclear symmetry energy is relevant for standard model tests
via atomic parity violation, as shown, e.g., in Ref. [10].
If β is the local neutron-proton asymmetry β≡

ðρn − ρpÞ=ρ, the energy per particle ðE=AÞ in matter having
neutron-proton imbalance is a function of ρ and β.
Such a function can be expanded in even powers of β
owing to isospin symmetry (the Coulomb force has to
be taken out when dealing with a uniform system). By
retaining only the quadratic term, we can write

E
A
ðρ; βÞ ¼ E

A
ðρ; β ¼ 0Þ þ SðρÞβ2: ð1Þ

This equation defines the symmetry energy SðρÞ, that is, the
difference between the energy per particle E=A in neutron
and symmetric matter. Equation (1) clearly explains why an
accurate knowledge of the symmetry energy is mandatory
in order to establish a link between the physics of finite
nuclei and that of a neutron star.
The symmetry energy can be expanded around

saturation density as SðρÞ ¼ J þ Lðρ − ρ0Þ=3ρ0þ
½Ksymðρ − ρ0Þ2=9ρ20 þ % % %, where different parameters
have been defined, namely, J ≡ Sðρ0Þ, L≡ 3ρ0S0ðρ0Þ,
and Ksym ≡ 9ρ20S

00ðρ0Þ. On these parameters, much atten-
tion has been focused. While Ksym is basically not known,
the error on L referred to as the “slope parameter” is
believed to be still significantly larger than the error on J:
ranges between 40 and 75 MeVor between 30 and 90 MeV
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are mentioned in Refs. [2–5]. Many authors have pointed
out a correlation between L and the neutron skin ΔRnp ≡
hr2ni1=2 − hr2pi1=2 of a heavy nucleus like 208Pb [11–14].
This can be understood also in an intuitive way. The larger
the change in symmetry energy as a function of the density,
the more convenient the system finds it to push the excess
neutrons to a lower density region, that is, toward the
surface. Precise and model-independent measurements of
the neutron skin are of paramount importance to pin down
the value of L [15,16]. Hence, the relevance of experiments
like PREX and possible steps forward in the same direction
[17–19].
The difficulties in determining the symmetry energy

behavior are associated with our still incomplete under-
standing of the strong interaction in the low-energy regime
that is important for nuclei. Then, finding a connection with
an observable that is not sensitive to the strong force
becomes an asset. The isobaric analog state (IAS) is one of
the well-established properties of nuclei that is measured
accurately, and it is only sensitive to the isospin symmetry
breaking (ISB) in the nuclear medium due to Coulomb
interaction and, to a lesser extent, the other effects that we
will discuss below. Then, here comes the focus of our work.
If there is an inconsistency between the properties of the
symmetry energy and our knowledge of the IAS and the
ISB forces, this is a serious issue. As discussed above,
the neutron skin is strongly correlated with the density
dependence of the symmetry energy. Therefore, we cannot
accept that the values of the neutron skin do not match our
understanding of the isospin symmetry, one of the basic
symmetries of nature, and of its breaking. In this Letter, a
solution is proposed.
Energy density functionals (EDFs) constitute, at present,

the only theoretical framework in which the neutron skins
and the IAS energies can be consistently calculated from a
microscopic perspective in medium-heavy nuclei [20].
Many different parameter sets exist for every class of
EDFs; basically, there are three classes of widely used
functionals, namely, Skyrme, Gogny, and relativistic mean-
field (RMF) functionals. We can focus our attention on
some recent accurate functionals and, in particular, on those
that have been used in recent years to correlate the
symmetry energy parameters with some observables.
Within the Skyrme functionals, SAMi [21] has been

shown to be especially accurate in the description of
charge-exchange resonances such as the Gamow-Teller
resonance. Starting from the prototype SAMi functional,
a systematically varied family has been generated by
keeping a similar quality of the original fit and varying
the values of J and L in Ref. [22]. In addition, a family
based also on the systematic variation of J and L with
respect to a RMF with density-dependent meson-nucleon
(DD-ME [23]) vertices was also introduced. These func-
tionals provide values of the neutron skin through the
Hartree-Fock (HF) or Hartree solution for the ground state,

and they provide self-consistently the IAS energy via the
charge-exchange random phase approximation (RPA)
[24,25]. The results for the IAS energy EIAS as a function
of ΔRnp are plotted in Fig. 1. For the sake of completeness,
the results associated with other Skyrme interactions are
also plotted in this figure.
The results displayed in Fig. 1 lie very close to a straight

line. This can be understood as follows. The main con-
tribution to EIAS can be evaluated from the Coulomb direct
contribution to the so-called displacement energy ΔEC;direct

d
(cf. Ref. [28]). The latter quantity can be approximately
calculated by assuming two uniform neutron and proton
distributions of radiusRn andRp, respectively, and approxi-
mating the electric charge density with the proton density.
This leads to EIAS ≈ ΔEC;direct

d ≈ ð6=5Þ½ðZe2Þ=ðr0A1=3Þ$×
½1− ð5=12Þð1=2Þ½N=ðN −ZÞ$½ðΔRnpÞ=ðr0A1=3Þ$$, where
r0 ¼ ð3=½4πρ0$Þ1=3, and, thus, 2r0 is the average distance
between two nucleons in symmetric nuclear matter
at saturation density. For the case of 208Pb, this formula
predicts EIAS ≈ 20.9 − 5.7ΔRnp (MeV). This result is in
qualitative agreement with the linear fit to the microscopic
calculations shown in Fig. 1, which gives EIAS ¼
19.19ð8Þ − 5.0ð2ÞΔRnp (MeV), with a large correlation
coefficient r ¼ −0.985. The experimental IAS energy
[29] is marked in the figure, and a simple extrapolation
of the straight line would imply ΔRnp ¼ 0.07ð2Þ fm. This
value is incompatible with many independent analyses
[2,5,30]. As a reference, recent experimental constraints
frompolarized proton elastic scattering [26], parity violating
elastic electron scattering [18], and electric dipole polar-
izability [27] are indicated in the bottom part of Fig. 1.
To solve this puzzle, we have reconsidered all possible

contributions to the IAS energy that have not been
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FIG. 1. Energy of the IAS as a function of ΔRnp. The arrows
indicate the experimental results from polarized proton elastic
scattering [26], parity violating elastic electron scattering [18],
and from the electric dipole polarizability [27]. See the text for a
discussion.
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considered with sufficient care in self-consistent calcula-
tions so far. All the effects listed below are introduced in the
HF mean-field calculations, as one can easily verify that
they do not impact the proton-neutron RPA residual force.
1. Coulomb interaction: Exact direct and exchange

contributions. The Coulomb energy per particle is by far
the dominant contribution to the IAS energy. Self-consis-
tent RPA calculations of the IAS are exact, in the specific
sense that they preserve the isospin symmetry: if the
Coulomb effects are switched completely off, the IAS is
found at zero energy [31]. When Skyrme forces are used, it
is customary in the literature to adopt the Slater approxi-
mation for the Coulomb exchange. In the present case, we
have instead included the exact Coulomb exchange. The
detailed procedure is explained in Ref. [32], where the
reader can also find a detailed analysis for the case of 208Pb.
The IAS energy is pushed upwards by ≈100 keV if exact
Coulomb exchange is taken into account.
2. Electromagnetic spin-orbit contribution. The electro-

magnetic spin-orbit effect on the single-nucleon energy εi is
well known and reads [33]

Δεi ¼
ℏ2c2

2m2c4
xih⃗li · s⃗ii

Z
dr
r
dUCoul

dr
u2i ðrÞ; ð2Þ

where uiðrÞ is the radial wave function, and xi is
equal to gp − 1 in the case of protons and to gn in the
case of neutrons [gn ¼ −3.826 085 45ð90Þ and gp ¼
5.585 694 702ð17Þ are the neutron and proton g factors,
respectively [34]]. The correction (2) can be estimated to be
of the order of tens of keV, and it is basically model
independent.
3. Finite-size effects. In most of the previous calcula-

tions, the Coulomb potential has been evaluated by simply
taking into account the point proton density and identifying
it with the charge density. In the present work, we have
considered in detail all contributions to the charge density
which, when written in momentum space up to order 1=m2,
reads [35]

ρchðqÞ ¼
!
1 −

q2

8m2

"
½GE;pðq2ÞρpðqÞ þ GE;nðq2ÞρnðqÞ&

−
πq2

2m2

X

n;l;j;t

½2GM;tðq2Þ − GE;tðq2Þ&h⃗l · s⃗i

×
Z

∞

0
dr

j1ðqrÞ
qr

jun;l;jðrÞj2; ð3Þ

where GE;M are the electromagnetic form factors taken
from Ref. [36], t labels either protons or neutrons, and the
sum runs over the occupied states. Finite-size effects spread
out the Coulomb potential: its effects on the p-h excitations
that make up the IAS are slightly weaker. The IAS energy
decreases, albeit only by a few tens of keV, due to this
effect.

4. Vacuum polarization correction. From QED, the
lowest-order correction to the fine-structure constant or
to the Coulomb potential is the vacuum polarization: it
amounts to a virtual emission and absorption of an electron-
positron pair and produces an extra repulsion that is not
completely negligible even at the present low-energy scale.
The corresponding potential can be written as follows
(cf. Refs. [37,38] and Ref. [39] in the case of a finite-size
particle):

VVPðr⃗Þ ¼
2

3

αe2

π

Z
dr⃗0

ρðr⃗0Þ
jr⃗ − r⃗0j

K1

!
2

ƛe
jr⃗ − r⃗0j

"
; ð4Þ

where α is the fine-structure constant, ƛe the reduced
Compton electron wavelength, and

K1ðxÞ≡
Z

∞

1
dte−xt

!
1

t2
þ 1

2t4

" ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
: ð5Þ

5. Charge-symmetry-breaking and charge-independence-
breaking forces. The contributions (1)–(4) together with the
n-p mass difference, which is one of the charge-symmetry-
breaking (CSB) potential terms, produce an overall upward
shift of the IAS energy, and the same for the straight line that
connects the points of Fig. 1. In Table I, we can see that this
shift, by adding also the small effect of the neutron-proton
mass difference, amounts to≈220 keV, and, consequently, it
is too small in order to let the line intersect the experimental
value for the IAS energy at a point that corresponds to a
realistic range of ΔRnp (indicated by the horizontal bars
in Fig. 1).
CSB and charge-independence-breaking (CIB) effects

have been widely discussed in the literature (see, for
example, Refs. [40–42]); however, most of the efforts have
been devoted to study their impact on few-nucleon systems
and few-hadron systems or to derive them from QCD
through effective field theory methods. Recently, the
isospin mixing in 8Be was studied based on the Green’s
function Monte Carlo method by including the CSB
interaction [43]. Although it has been known for many

TABLE I. Effect of the different contributions from isospin
breaking (including both CSB and CIB) mentioned in the text on
the IAS energy in 208Pb. Corrections are basically model
independent except the last one.

EIAS (MeV) Correction (keV)

No corrections 18.31
Exact Coulomb exchange 18.41 þ100
n=p mass difference 18.44 þ30
Electromagnetic spin orbit 18.45 þ10
Finite-size effects 18.40 −50
Vacuum polarization (Vch) 18.53 þ130

Isospin symmetry breaking 18.80 þ270
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years that CSB and CIB forces must be taken into account
to reproduce the so-called Nolen-Schiffer anomaly along
the nuclear chart, the information on CSB and CIB forces in
the nuclear medium is scarce. The nuclear shell model has
been employed for quite some time to analyze the energies
along the isobaric multiplets; recently, long sequences of
multiplets in rotational bands have been used to determine
the magnitude of CSB and CIB effects [44]. In the same
context, it has been noticed that CSB and CIB interactions
needed to explain the data are not consistent with those in
vacuum [45]. Similar conclusions have been drawn
in Ref. [46].
Therefore, in the present work, we have kept our

description simple and aimed to reconcile the scarce
information about CSB and CIB in the medium, and the
reproduction of the IAS energy, with a realistic value
for the neutron skin. Borrowing from Ref. [47]
[cf. Eqs. (18)–(21)], we define simpler Skyrme-like CSB
and CIB interactions as follows:

VCSBðr⃗1; r⃗2Þ≡ 1

4
½τzð1Þ þ τzð2Þ%s0ð1þ y0PσÞδðr⃗1 − r⃗2Þ;

and

VCIBðr⃗1; r⃗2Þ≡ 1

2
τzð1Þτzð2Þu0ð1þ z0PσÞδðr⃗1 − r⃗2Þ:

Pσ is the spin-exchange operator and we take y0 ¼ −1
and z0 ¼ −1. The momentum-dependent terms written in
Ref. [47] have not been considered under the rationale that
the information that we have at our disposal is not sufficient
to pin down the values of all parameters of a general
interaction with several partial waves.
We have looked at the ISB contributions to the energy

per particle of symmetric nuclear matter, as predicted by the
Brueckner-Hartree-Fock calculations of Ref. [48] (based on
AV18 [49]). We have determined a new Skyrme parameter
set named SAMi-ISB using the same fitting protocol
of SAMi but including CSB and CIB contributions [50].
We have first started from existing parameters of SAMi and
fixed the values of s0 and u0 by requiring a reproduction of
the results of Ref. [48] and the value of the IAS energy in

208Pb. This gives [the adopted deviations that lead to the
estimated statistical errors are 30 keV on the IAS energy
and 10 keV (∼10% error) on the CSB contribution to
E=A in symmetric matter] s0 ¼ −26.3ð7Þ MeV fm3 and
u0 ¼ 25.8ð4Þ MeV fm3. Then, the standard Skyrme param-
eters have been refitted; the effect of CSB or CIB is
included, but these forces affect the binding energies and
charge radii only by a few per mil or percent, so that this
two-step strategy is feasible.
The values of the SAMi-ISB parameters are provided in

Table II. As seen in Fig. 1, with SAMi-ISB, the IAS
energy of 208Pb is predicted at EIAS ¼ 18.80ð5Þ MeV
(Eexp

IAS ¼ 18.826' 0.010 MeV [29]) with the neutron skin
ΔRnp ¼ 0.151ð7Þ fm, which is within the realistic range
deduced from the three experiments. The quality of this
interaction is similar or better than SAMi if we look at
the overall properties like those in uniform matter. The
values of J and L are, in the case of SAMi-ISB (SAMi),
30.8(4) MeV (28ð1Þ MeV) and 50(4) MeV (44ð7Þ MeV).
These are quite realistic values according to our general
discussion at the start of this Letter. While the detailed
assessment of SAMi-ISB along the isotope chart is out of
our scope here, we show in Table III some results for
binding energies, charge radii, and neutron skin thick-
nesses. Moreover, we have checked the predictive power of
SAMi-ISB by calculating the IAS energy in other nuclei. In
the Sn isotopes with A ¼ 112–124, the IAS energies
calculated with SAMi differ from the experimental values
by about 600 keV, while this discrepancy is reduced to
≈50–200 keV by using SAMi-ISB. In 40Ca and 90Zr, the
results obtained with SAMi-ISB are also improved with
respect to SAMi [50].
In conclusion, SAMi-ISB is a new parametrization of a

Skyrme-like EDF that reconciles standard nuclear proper-
ties (saturation density, binding energy, and charge radii of
finite nuclei) with both our current understanding of the
density behavior of the symmetry energy and the repro-
duction of the IAS energy of 208Pb as well as in Sn isotopes.
We have self-consistently included for the first time within
the HFþ RPA framework all known contributions that
break the isospin symmetry. All of these contributions have
been calculated in a model-independent way, except the
CSB and CIB contribution. We have fixed only two free
parameters in the CSB and CIB terms, and we have shown

TABLE II. SAMi-ISB parameter set. The statistical errors σ are
given in parentheses. See text for details.

Value (σ) Value (σ)

t0 −2098.3ð149.3Þ MeV fm3 x0 0.242(9)
t1 394.7ð15.8Þ MeV fm5 x1 −0.17ð33Þ
t2 −136.4ð10.8Þ MeV fm5 x2 −0.470ð4Þ
t3 11 995ð686Þ MeV fm3þ3α x3 0.32(21)
W0 294(6)
W0

0 −367ð12Þ s0 −26.3ð7Þ MeV fm3

α 0.223(31) u0 25.8ð4Þ MeV fm3

TABLE III. Experimental data [57,58] and SAMi-ISB results
for the binding energies (B), charge radii (rc), and neutron skin
thickness (ΔRnp) for some selected nuclei.

Element N B (MeV) Bexp (MeV) rc (fm) rexpc (fm) ΔRnp (fm)

Ca 28 417.67 415.99 3.49 3.47 0.214
Zr 50 783.60 783.89 4.26 4.27 0.097
Sn 82 1102.75 1102.85 4.73 (( ( () 0.217
Pb 126 1635.78 1636.43 5.50 5.50 0.151

PHYSICAL REVIEW LETTERS 120, 202501 (2018)

202501-4

years that CSB and CIB forces must be taken into account
to reproduce the so-called Nolen-Schiffer anomaly along
the nuclear chart, the information on CSB and CIB forces in
the nuclear medium is scarce. The nuclear shell model has
been employed for quite some time to analyze the energies
along the isobaric multiplets; recently, long sequences of
multiplets in rotational bands have been used to determine
the magnitude of CSB and CIB effects [44]. In the same
context, it has been noticed that CSB and CIB interactions
needed to explain the data are not consistent with those in
vacuum [45]. Similar conclusions have been drawn
in Ref. [46].
Therefore, in the present work, we have kept our

description simple and aimed to reconcile the scarce
information about CSB and CIB in the medium, and the
reproduction of the IAS energy, with a realistic value
for the neutron skin. Borrowing from Ref. [47]
[cf. Eqs. (18)–(21)], we define simpler Skyrme-like CSB
and CIB interactions as follows:

VCSBðr⃗1; r⃗2Þ≡ 1

4
½τzð1Þ þ τzð2Þ%s0ð1þ y0PσÞδðr⃗1 − r⃗2Þ;

and

VCIBðr⃗1; r⃗2Þ≡ 1

2
τzð1Þτzð2Þu0ð1þ z0PσÞδðr⃗1 − r⃗2Þ:

Pσ is the spin-exchange operator and we take y0 ¼ −1
and z0 ¼ −1. The momentum-dependent terms written in
Ref. [47] have not been considered under the rationale that
the information that we have at our disposal is not sufficient
to pin down the values of all parameters of a general
interaction with several partial waves.
We have looked at the ISB contributions to the energy

per particle of symmetric nuclear matter, as predicted by the
Brueckner-Hartree-Fock calculations of Ref. [48] (based on
AV18 [49]). We have determined a new Skyrme parameter
set named SAMi-ISB using the same fitting protocol
of SAMi but including CSB and CIB contributions [50].
We have first started from existing parameters of SAMi and
fixed the values of s0 and u0 by requiring a reproduction of
the results of Ref. [48] and the value of the IAS energy in

208Pb. This gives [the adopted deviations that lead to the
estimated statistical errors are 30 keV on the IAS energy
and 10 keV (∼10% error) on the CSB contribution to
E=A in symmetric matter] s0 ¼ −26.3ð7Þ MeV fm3 and
u0 ¼ 25.8ð4Þ MeV fm3. Then, the standard Skyrme param-
eters have been refitted; the effect of CSB or CIB is
included, but these forces affect the binding energies and
charge radii only by a few per mil or percent, so that this
two-step strategy is feasible.
The values of the SAMi-ISB parameters are provided in

Table II. As seen in Fig. 1, with SAMi-ISB, the IAS
energy of 208Pb is predicted at EIAS ¼ 18.80ð5Þ MeV
(Eexp

IAS ¼ 18.826' 0.010 MeV [29]) with the neutron skin
ΔRnp ¼ 0.151ð7Þ fm, which is within the realistic range
deduced from the three experiments. The quality of this
interaction is similar or better than SAMi if we look at
the overall properties like those in uniform matter. The
values of J and L are, in the case of SAMi-ISB (SAMi),
30.8(4) MeV (28ð1Þ MeV) and 50(4) MeV (44ð7Þ MeV).
These are quite realistic values according to our general
discussion at the start of this Letter. While the detailed
assessment of SAMi-ISB along the isotope chart is out of
our scope here, we show in Table III some results for
binding energies, charge radii, and neutron skin thick-
nesses. Moreover, we have checked the predictive power of
SAMi-ISB by calculating the IAS energy in other nuclei. In
the Sn isotopes with A ¼ 112–124, the IAS energies
calculated with SAMi differ from the experimental values
by about 600 keV, while this discrepancy is reduced to
≈50–200 keV by using SAMi-ISB. In 40Ca and 90Zr, the
results obtained with SAMi-ISB are also improved with
respect to SAMi [50].
In conclusion, SAMi-ISB is a new parametrization of a

Skyrme-like EDF that reconciles standard nuclear proper-
ties (saturation density, binding energy, and charge radii of
finite nuclei) with both our current understanding of the
density behavior of the symmetry energy and the repro-
duction of the IAS energy of 208Pb as well as in Sn isotopes.
We have self-consistently included for the first time within
the HFþ RPA framework all known contributions that
break the isospin symmetry. All of these contributions have
been calculated in a model-independent way, except the
CSB and CIB contribution. We have fixed only two free
parameters in the CSB and CIB terms, and we have shown

TABLE II. SAMi-ISB parameter set. The statistical errors σ are
given in parentheses. See text for details.

Value (σ) Value (σ)

t0 −2098.3ð149.3Þ MeV fm3 x0 0.242(9)
t1 394.7ð15.8Þ MeV fm5 x1 −0.17ð33Þ
t2 −136.4ð10.8Þ MeV fm5 x2 −0.470ð4Þ
t3 11 995ð686Þ MeV fm3þ3α x3 0.32(21)
W0 294(6)
W0

0 −367ð12Þ s0 −26.3ð7Þ MeV fm3

α 0.223(31) u0 25.8ð4Þ MeV fm3

TABLE III. Experimental data [57,58] and SAMi-ISB results
for the binding energies (B), charge radii (rc), and neutron skin
thickness (ΔRnp) for some selected nuclei.

Element N B (MeV) Bexp (MeV) rc (fm) rexpc (fm) ΔRnp (fm)

Ca 28 417.67 415.99 3.49 3.47 0.214
Zr 50 783.60 783.89 4.26 4.27 0.097
Sn 82 1102.75 1102.85 4.73 (( ( () 0.217
Pb 126 1635.78 1636.43 5.50 5.50 0.151

PHYSICAL REVIEW LETTERS 120, 202501 (2018)

202501-4



Nuclear Energy Density Functionals

Kohn-Sham DFT 

VHO

=⇒
VKS

Figure 1: Kohn-Sham DFT for a vext = VHO harmonic trap. On the left is the interacting system and
on the right the Kohn-Sham system. The density profile is the same in each.

give more details in Section 4 on how this works. (This perspective also shows that taking v = 0 is not
a problem in principle; such sources are usually set equal to zero at the end, although in this case there
are related issues with self-bound systems such as nuclei.)

In practice, DFT is rarely implemented as a pure functional of the density, such as a generalized
Thomas-Fermi functional, because no one has succeeded in constructing one that yields the desired
accuracy (an immediate problem is finding an adequate functional of density only for the kinetic energy).
Instead, the most successful procedure is to introduce single-particle orbitals that are used in what
appears to be an auxiliary problem, but which still leads to the minimization of the energy functional
for the ground-state energy Egs and density ρgs. This is called Kohn-Sham (KS) DFT, and is illustrated
schematically in Fig. 1 for fermions in a harmonic trap. The characteristic feature is that the interacting
density for A fermions in the external potential vext is equal (by construction) to the non-interacting
density in another single-particle potential. This is achieved by orbitals {φi(x)} in the local potential
vKS([ρ],x) ≡ vKS(x), which are solutions to

[−∇2/2m+ vKS(x)]φi(x) = εiφi(x) , (11)

and determine the density by

ρ(x) =
∑

i

ni|φi(x)|
2 =

A∑

i=1

|φi(x)|
2 , (12)

where the sum is over the lowest A states with ni = θ(εF − εi) here. When we include pairing, the
sum is generalized to be over all orbitals with appropriate occupation numbers (see Section 5.1). The
magic Kohn-Sham potential vKS([ρ],x) is in turn determined from δEv[ρ]/δρ(x) (see below). Thus the
Kohn-Sham orbitals depend on the potential, which depends on the density, which depends on the
orbitals, so we must solve self-consistently (for example, by iterating until convergence). We will return
later to address the meaning of the KS eigenvalues εi. The ground-state energy is Egs = Evext [ρgs].

We will define orbital-based density functional theory (DFT) broadly as any many-body method
based on a local (“multiplicative”) background potential (what we called vKS above) used to calculate
the ground-state energy and density of inhomogeneous systems in the manner just described. That is,
there will be a single-particle, non-interacting component of the problem that involves solving for orbitals
with a local (diagonal in coordinate space) potential. We will also require that there are no corrections
to the density obtained from these occupied orbitals (as in usual Kohn-Sham DFT). It is not obvious at
this point that this is a necessary feature, because it is not essential to the numerical simplicity or good
scaling behavior. We will see in later sections how it arises. This characterization of DFT can be realized
in seemingly very different approaches, such as a particular organization of (possibly resummed) many-
body perturbation theory (MBPT) and effective actions for composite operators (based on functional
Legendre transformations). The DFT formalism is often said to be a mean-field approach because of
the Kohn-Sham potential and this applies to our general definition as well. The point is that it is not a

6

Interacting system Non-interacting system

Same density profiles

For any interacting system, there exists a local single-particle (Kohn-Sham) potential vs(r), such that the exact 
ground-state density of the interacting system equals the ground-state density of the auxiliary problem:

n(r) = ns(r) ≡
occ∑

i

|φi(r)|2

The single-particle orbitals are solutions of the Kohn-Sham equations:
[
−∇2/2 + vs(r)

]
φi(r) = εiφi(r)
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ABSTRACT
The goal of nuclear structure physics is to provide a complete
understanding of the static properties of atomic nuclei, their
excitation spectra, their response to external fields and their
decays. While it is hard to achieve these goals within a single
framework, so that there is no nuclear ‘standard model’, it is
clear that nuclear Density Functional Theory (DFT) has prob-
ably the widest range of applicability so far. In this paper, we
try to put DFT in a broader context, with frequent compar-
isons to electronic DFT. We also include a discussion of the
relationships with ab initio methods and Effective Field
Theories (EFTs) in general, as well as a short survey of the
quite large number of applications. Although written with
a personal and possibly biased perspective, the paper aims at
fostering cross-fertilizations with other domains of science.
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1. Introduction

Nuclear physics has the well-deserved reputation of being an intricate,
demanding, and sometimes painful subject in physics.

At the phenomenological level, one can start by considering the huge
variety of properties that nuclear systems display. Their existence or non-
existence is already a non-trivial property. Today we know ! 250 stable
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integration formula to determine numerically the KS energy of that system. A possible choice for the density
path is proposed. A benchmark in the case of a simplified yet realistic nuclear system is shown to be successful,
so the method seems promising for future applications.
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I. INTRODUCTION

The inverse Kohn-Sham (IKS) problem [1,2] aims at re-
verse engineering the two steps that characterize density
functional theory in the Kohn-Sham direct scheme (KS-DFT)
[3,4]. In the direct DFT problem, one usually assumes an
energy density functional, or EDF, E [ρ]. Minimization of this
functional, in the form δE [ρ] = 0, provides a formulation
of the ground-state (g.s.) problem, while the Runge-Gross
theorem sets the formal basis for the study of excited states
within a time-dependent DFT framework [5].

Specifically, in the KS-DFT scheme a single-particle (s.p.)
representation is employed. Indeed, an auxiliary system of
independent particles with the same g.s. density as the true
interacting system is introduced. The KS density, then, is a
function of the s.p. orbitals φα (r) and reads

ρ(r) =
∑

α

φ∗
α (r)φα (r). (1)

The EDF is customarily written as

E [ρ] = T + F + Vext, (2)

where T is the kinetic energy of a system of independent
particles, F is the internal potential energy of the auxiliary
KS system, and Vext is the contribution to the energy due to an
external potential vext(r). A potential v[ρ] is associated to F
by means of

v[ρ] ≡ δF
δρ

. (3)

Then, the variational equation δE [ρ] = 0, with the con-
straint that the orbitals form an orthonormal set, gives rise
to the so-called KS equations, that are a set of one-particle
Schrödinger-like equations. Hence, the first step of the direct
KS problem consists in calculating the effective potential v[ρ]

*francesco.marino@unimi.it

from an assumed form for F . The second step consists in
solving the KS equations in order to determine the s.p. orbitals
and the corresponding density (1). In short,

E [ρ] → v[ρ] → ρ (4)

is a view of the direct KS problem.
The IKS problem, that is,

ρ → v[ρ] → E [ρ], (5)

is far less simple. Inverse problems are in general difficult
to tackle from a mathematical and computational viewpoint.
First, we should stress that there are many more attempts
and results concerning the first branch (density-to-potential,
hereafter D2P) than for the second one (potential-to-energy,
hereafter denoted by P2E). As for the D2P step, the first
techniques to solve the IKS problem have been proposed
in the context of electronic DFT in Refs. [6–9]. This topic
has recently encountered renewed interest both in quantum
chemistry [10–14] and in nuclear physics [15,16] (our group
had undertaken preliminary steps; cf., e.g., Ref. [17]). Several
inversion techniques that are relevant in this context are re-
viewed in the useful Refs. [1,2,18], and inversion codes either
have been developed ex novo [13] or have been integrated
into existing libraries, such as Octopus [19]. Complementary
to these practical implementations, we should also mention a
recent attempt to delve more into the mathematical aspects of
the IKS problem [20].

However, in spite of the indubitable technical progress
[10], the first branch of the IKS problem has found per se
only a limited number of applications. So far, indeed, the
reverse-engineered KS potentials have been mostly employed
to benchmark existing models [12,21]. In our view, the topic
of utmost interest is the determination of the EDF itself. To
this purpose, the P2E step is necessarily involved. Among
the few attempts in this direction, we mention that machine
learning approaches to DFT may benefit from the knowledge
of the exact KS potential [10]. For example, in Ref. [22] it
has been shown that training a neural network EDF not only
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inversion techniques that are relevant in this context are re-
viewed in the useful Refs. [1,2,18], and inversion codes either
have been developed ex novo [13] or have been integrated
into existing libraries, such as Octopus [19]. Complementary
to these practical implementations, we should also mention a
recent attempt to delve more into the mathematical aspects of
the IKS problem [20].

However, in spite of the indubitable technical progress
[10], the first branch of the IKS problem has found per se
only a limited number of applications. So far, indeed, the
reverse-engineered KS potentials have been mostly employed
to benchmark existing models [12,21]. In our view, the topic
of utmost interest is the determination of the EDF itself. To
this purpose, the P2E step is necessarily involved. Among
the few attempts in this direction, we mention that machine
learning approaches to DFT may benefit from the knowledge
of the exact KS potential [10]. For example, in Ref. [22] it
has been shown that training a neural network EDF not only
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I. INTRODUCTION

The inverse Kohn-Sham (IKS) problem [1,2] aims at re-
verse engineering the two steps that characterize density
functional theory in the Kohn-Sham direct scheme (KS-DFT)
[3,4]. In the direct DFT problem, one usually assumes an
energy density functional, or EDF, E [ρ]. Minimization of this
functional, in the form δE [ρ] = 0, provides a formulation
of the ground-state (g.s.) problem, while the Runge-Gross
theorem sets the formal basis for the study of excited states
within a time-dependent DFT framework [5].

Specifically, in the KS-DFT scheme a single-particle (s.p.)
representation is employed. Indeed, an auxiliary system of
independent particles with the same g.s. density as the true
interacting system is introduced. The KS density, then, is a
function of the s.p. orbitals φα (r) and reads

ρ(r) =
∑

α

φ∗
α (r)φα (r). (1)

The EDF is customarily written as

E [ρ] = T + F + Vext, (2)

where T is the kinetic energy of a system of independent
particles, F is the internal potential energy of the auxiliary
KS system, and Vext is the contribution to the energy due to an
external potential vext(r). A potential v[ρ] is associated to F
by means of

v[ρ] ≡ δF
δρ

. (3)

Then, the variational equation δE [ρ] = 0, with the con-
straint that the orbitals form an orthonormal set, gives rise
to the so-called KS equations, that are a set of one-particle
Schrödinger-like equations. Hence, the first step of the direct
KS problem consists in calculating the effective potential v[ρ]
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from an assumed form for F . The second step consists in
solving the KS equations in order to determine the s.p. orbitals
and the corresponding density (1). In short,

E [ρ] → v[ρ] → ρ (4)

is a view of the direct KS problem.
The IKS problem, that is,

ρ → v[ρ] → E [ρ], (5)

is far less simple. Inverse problems are in general difficult
to tackle from a mathematical and computational viewpoint.
First, we should stress that there are many more attempts
and results concerning the first branch (density-to-potential,
hereafter D2P) than for the second one (potential-to-energy,
hereafter denoted by P2E). As for the D2P step, the first
techniques to solve the IKS problem have been proposed
in the context of electronic DFT in Refs. [6–9]. This topic
has recently encountered renewed interest both in quantum
chemistry [10–14] and in nuclear physics [15,16] (our group
had undertaken preliminary steps; cf., e.g., Ref. [17]). Several
inversion techniques that are relevant in this context are re-
viewed in the useful Refs. [1,2,18], and inversion codes either
have been developed ex novo [13] or have been integrated
into existing libraries, such as Octopus [19]. Complementary
to these practical implementations, we should also mention a
recent attempt to delve more into the mathematical aspects of
the IKS problem [20].

However, in spite of the indubitable technical progress
[10], the first branch of the IKS problem has found per se
only a limited number of applications. So far, indeed, the
reverse-engineered KS potentials have been mostly employed
to benchmark existing models [12,21]. In our view, the topic
of utmost interest is the determination of the EDF itself. To
this purpose, the P2E step is necessarily involved. Among
the few attempts in this direction, we mention that machine
learning approaches to DFT may benefit from the knowledge
of the exact KS potential [10]. For example, in Ref. [22] it
has been shown that training a neural network EDF not only
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functional, in the form δE [ρ] = 0, provides a formulation
of the ground-state (g.s.) problem, while the Runge-Gross
theorem sets the formal basis for the study of excited states
within a time-dependent DFT framework [5].

Specifically, in the KS-DFT scheme a single-particle (s.p.)
representation is employed. Indeed, an auxiliary system of
independent particles with the same g.s. density as the true
interacting system is introduced. The KS density, then, is a
function of the s.p. orbitals φα (r) and reads
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particles, F is the internal potential energy of the auxiliary
KS system, and Vext is the contribution to the energy due to an
external potential vext(r). A potential v[ρ] is associated to F
by means of
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Then, the variational equation δE [ρ] = 0, with the con-
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to the so-called KS equations, that are a set of one-particle
Schrödinger-like equations. Hence, the first step of the direct
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from an assumed form for F . The second step consists in
solving the KS equations in order to determine the s.p. orbitals
and the corresponding density (1). In short,

E [ρ] → v[ρ] → ρ (4)

is a view of the direct KS problem.
The IKS problem, that is,

ρ → v[ρ] → E [ρ], (5)

is far less simple. Inverse problems are in general difficult
to tackle from a mathematical and computational viewpoint.
First, we should stress that there are many more attempts
and results concerning the first branch (density-to-potential,
hereafter D2P) than for the second one (potential-to-energy,
hereafter denoted by P2E). As for the D2P step, the first
techniques to solve the IKS problem have been proposed
in the context of electronic DFT in Refs. [6–9]. This topic
has recently encountered renewed interest both in quantum
chemistry [10–14] and in nuclear physics [15,16] (our group
had undertaken preliminary steps; cf., e.g., Ref. [17]). Several
inversion techniques that are relevant in this context are re-
viewed in the useful Refs. [1,2,18], and inversion codes either
have been developed ex novo [13] or have been integrated
into existing libraries, such as Octopus [19]. Complementary
to these practical implementations, we should also mention a
recent attempt to delve more into the mathematical aspects of
the IKS problem [20].

However, in spite of the indubitable technical progress
[10], the first branch of the IKS problem has found per se
only a limited number of applications. So far, indeed, the
reverse-engineered KS potentials have been mostly employed
to benchmark existing models [12,21]. In our view, the topic
of utmost interest is the determination of the EDF itself. To
this purpose, the P2E step is necessarily involved. Among
the few attempts in this direction, we mention that machine
learning approaches to DFT may benefit from the knowledge
of the exact KS potential [10]. For example, in Ref. [22] it
has been shown that training a neural network EDF not only
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Nuclear density functional theory (DFT) plays a prominent role in the understanding of nuclear structure,
being the approach with the widest range of applications. Hohenberg and Kohn theorems warrant the existence
of a nuclear energy density functional (EDF), yet its form is unknown. Current efforts to build a nuclear EDF
are hindered by the lack of a strategy for systematic improvement. In this context, alternative approaches should
be pursued and, so far, an unexplored avenue is that related to the inverse DFT problem. DFT is based on
the one-to-one correspondence between Kohn-Sham (KS) potentials and densities. The exact EDF produces
the exact density, so that from the knowledge of experimental or ab initio densities one may deduce useful
information through reverse engineering. The idea has already been proved to be useful in the case of electronic
systems. The general problem should be dealt with in steps, and the objective of the present work is to focus
on testing algorithms to extract the Kohn-Sham potential within the simplest ansatz from the knowledge of the
experimental neutron and proton densities. We conclude that, while robust algorithms exist, the experimental
densities present some critical aspects. Finally, we provide some perspectives for future works.

DOI: 10.1103/PhysRevC.101.024315

I. INTRODUCTION

Density functional theory (DFT) has become gradually one
of the best tools of choice for the study of nuclear structure
[1,2], trying to follow the path that led to the success of elec-
tronic DFT [3,4]. There are analogies and differences between
the two cases. One can expect that building an energy density
functional (EDF) for nuclei is harder than doing the same for
electronic systems, in keeping with the more involved, and
less well known, underlying nucleon-nucleon (NN) interac-
tion. This interaction is strongly spin- and isospin-dependent,
while momentum-dependent, spin-orbit, and tensor terms are
far from being negligible and there are also three-body (NNN)
components; all this is at variance with the Coulomb case.

DFT is grounded in the Hohenberg-Kohn theorems
(HKTs), stating that a universal EDF must exist and yet not
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providing any guidance on how to build its terms [5]. The most
used and well-established nuclear EDFs like the Skyrme and
Gogny ones (we do not discuss covariant functionals which,
though very successful, are outside our scope here) include
terms that have their origin in central two-body forces and
have a form proportional to the square of the total number
density (ρ2) and repulsive terms which depend on a larger
power of ρ to mimic short-range repulsion, besides the terms
that have been mentioned in the previous paragraph and ac-
count for spin forces, spin-orbit forces, etc. They contain pa-
rameters that are fitted on experimental properties of selected
nuclei, can be dubbed as phenomenological, and lack from the
beginning a clear mechanism for systematic improvement.

Recently, several groups have undertaken important steps
to build more general EDFs, in which one starts from ρ-
dependent terms, and include other terms that depend on
gradients !∇ρ up to a given order (see [6], as well as [7]
and references therein). The systematic construction of all
possible densities and their gradients has been described in
the past [8,9], together with the systematic classification of all
possible terms that should enter a nuclear EDF [10]. These
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A model is developed, based on the density functional perturbation theory and the inverse Kohn-Sham method,
that can be used to improve relativistic nuclear energy density functionals towards an exact but unknown
Kohn-Sham Hartree-exchange-correlation functional. The improved functional is determined by empirical exact
ground-state densities of finite systems. A test of the model and an illustrative calculation are performed, starting
from two different approximate functionals, to reproduce the parameters and density dependence of a target
functional, using exact ground-state densities of symmetric N = Z systems.
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I. INTRODUCTION

Nuclear energy density functionals (EDFs) have been de-
veloped, more or less systematically, over the last two decades
into a universal theoretical framework for the analysis of
ground-state properties, low-energy collective excitations, and
reaction dynamics of medium-heavy and heavy nuclei [1,2].
At present no other theoretical approach can be used to consis-
tently describe diverse emergent nuclear phenomena with the
same level of simplicity and accuracy, and at a comparable
computational cost. Based on universal EDFs, a number of
microscopic models, such as the random phase approximation
[3–5], the interacting boson model [6,7], and the generator
coordinate method [8–10], have also been designed to explore
low-energy spectroscopy and large-amplitude dynamics on a
quantitative level, and to calculate various details for astro-
physical applications.

The exact but unknown nuclear EDF must be approximated
by functionals of powers and gradients of ground-state nu-
cleon densities and currents. Even though a great number of
studies have been devoted to the microscopic formulation of a
universal EDF framework (for a recent review, see Ref. [11]),
the most successful nuclear EDFs are either semiempirical or
completely phenomenological. In a semiempirical approach,
one starts from a microscopically motivated ansatz for the nu-
cleon density dependence of the energy of a system of protons
and neutrons. Part of the parameters of such a functional can
be determined, at least qualitatively, by microscopic calcu-
lations of the energy of isospin symmetric and asymmetric
infinite nuclear matter as a function of the nucleon density
(or Fermi momentum). The remaining parameters are usually
adjusted to selected ground-state data, e.g., masses and charge
radii, of an arbitrarily large set of nuclei. Fully phenomeno-
logical EDFs, for instance Skyrme, Gogny, and relativistic
ones, usually take into account some empirical properties of

nuclear matter at saturation, but all parameters are adjusted to
ground-state data of finite nuclei.

The question we address in this work is how to improve a
given functional towards the exact but unknown nuclear EDF.
One could start, for instance, from a general expansion in
powers of densities and currents and retain all terms allowed
by symmetries up to a given order. Such a functional could be
derived, in principle, from a microscopic theory (low-energy
QCD) that describes the underlying many-body dynamics.
The problem, however, is that available low-energy nuclear
data can only constrain a relatively small subset of terms and
determine the corresponding parameters. Moreover, nuclear
EDFs are “sloppy”, that is, they generally exhibit an exponen-
tial range of sensitivity to parameter variations, and one finds
many soft linear combinations of bare model parameters that
are poorly constrained by data. This often indicates the pres-
ence of low-dimensional effective functionals associated with
the relevant (stiff) parameter combinations. In Refs. [12,13],
we considered, in the context of nuclear structure, the in-
teresting problem of a systematic construction of reduced
low-dimensional functionals from a more complete but sloppy
framework. Using methods of information geometry, it has
been shown how to systematically construct effective EDFs of
successively lower dimension in parameter space until slop-
piness is eventually eliminated and the resulting functional
contains only stiff combinations of parameters.

Instead of using low-energy data to reduce the complexity
of a very general functional, one could also start from a rela-
tively simple functional form and improve it towards the exact
but unknown EDF. Such an expansion must, of course, be con-
strained by available data. In the spirit of density functional
theory (DFT) [14–16], the empirical (exact) ground-state den-
sities should determine the improved EDF. In fact, the inverse
problem of DFT is formulated as a density-to-potential inver-
sion that, starting from a given exact ground-state density,

2469-9985/2021/103(4)/044304(10) 044304-1 ©2021 American Physical Society

Giacomo Accorto, Tomoya Naito (内藤智也), Haozhao Liang (梁豪兆), Tamara Nikšić, and Dario Vretenar

PHYSICAL REVIEW C 105, 034309 (2022)

Complete solution to the inverse Kohn-Sham problem: From the density to the energy

A. Liardi ,1 F. Marino ,1,2,* G. Colò ,1,2 X. Roca-Maza ,1,2 and E. Vigezzi 2

1Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

(Received 21 October 2021; revised 17 December 2021; accepted 18 February 2022; published 7 March 2022)

A complete solution to the inverse problem of Kohn-Sham (KS) density functional theory is proposed. Our
method consists of two steps. First, the effective KS potential is determined from the ground-state density of a
given system. Then, the knowledge of the potentials along a path in the space of densities is exploited in a line
integration formula to determine numerically the KS energy of that system. A possible choice for the density
path is proposed. A benchmark in the case of a simplified yet realistic nuclear system is shown to be successful,
so the method seems promising for future applications.

DOI: 10.1103/PhysRevC.105.034309

I. INTRODUCTION

The inverse Kohn-Sham (IKS) problem [1,2] aims at re-
verse engineering the two steps that characterize density
functional theory in the Kohn-Sham direct scheme (KS-DFT)
[3,4]. In the direct DFT problem, one usually assumes an
energy density functional, or EDF, E [ρ]. Minimization of this
functional, in the form δE [ρ] = 0, provides a formulation
of the ground-state (g.s.) problem, while the Runge-Gross
theorem sets the formal basis for the study of excited states
within a time-dependent DFT framework [5].

Specifically, in the KS-DFT scheme a single-particle (s.p.)
representation is employed. Indeed, an auxiliary system of
independent particles with the same g.s. density as the true
interacting system is introduced. The KS density, then, is a
function of the s.p. orbitals φα (r) and reads

ρ(r) =
∑

α

φ∗
α (r)φα (r). (1)

The EDF is customarily written as

E [ρ] = T + F + Vext, (2)

where T is the kinetic energy of a system of independent
particles, F is the internal potential energy of the auxiliary
KS system, and Vext is the contribution to the energy due to an
external potential vext(r). A potential v[ρ] is associated to F
by means of

v[ρ] ≡ δF
δρ

. (3)

Then, the variational equation δE [ρ] = 0, with the con-
straint that the orbitals form an orthonormal set, gives rise
to the so-called KS equations, that are a set of one-particle
Schrödinger-like equations. Hence, the first step of the direct
KS problem consists in calculating the effective potential v[ρ]
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from an assumed form for F . The second step consists in
solving the KS equations in order to determine the s.p. orbitals
and the corresponding density (1). In short,

E [ρ] → v[ρ] → ρ (4)

is a view of the direct KS problem.
The IKS problem, that is,

ρ → v[ρ] → E [ρ], (5)

is far less simple. Inverse problems are in general difficult
to tackle from a mathematical and computational viewpoint.
First, we should stress that there are many more attempts
and results concerning the first branch (density-to-potential,
hereafter D2P) than for the second one (potential-to-energy,
hereafter denoted by P2E). As for the D2P step, the first
techniques to solve the IKS problem have been proposed
in the context of electronic DFT in Refs. [6–9]. This topic
has recently encountered renewed interest both in quantum
chemistry [10–14] and in nuclear physics [15,16] (our group
had undertaken preliminary steps; cf., e.g., Ref. [17]). Several
inversion techniques that are relevant in this context are re-
viewed in the useful Refs. [1,2,18], and inversion codes either
have been developed ex novo [13] or have been integrated
into existing libraries, such as Octopus [19]. Complementary
to these practical implementations, we should also mention a
recent attempt to delve more into the mathematical aspects of
the IKS problem [20].

However, in spite of the indubitable technical progress
[10], the first branch of the IKS problem has found per se
only a limited number of applications. So far, indeed, the
reverse-engineered KS potentials have been mostly employed
to benchmark existing models [12,21]. In our view, the topic
of utmost interest is the determination of the EDF itself. To
this purpose, the P2E step is necessarily involved. Among
the few attempts in this direction, we mention that machine
learning approaches to DFT may benefit from the knowledge
of the exact KS potential [10]. For example, in Ref. [22] it
has been shown that training a neural network EDF not only
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However, Eq. (11) specifically requires the knowledge of v[ρ]
alone. While we cannot suggest a general solution, we propose
a way to circumvent this difficulty in specific cases. Indeed,
the freedom in the choice of the density path has to be ex-
ploited. Theoretical calculations of the systems under study,
subject to a known external potential vext,t , can be performed
and the corresponding densities ρt (r) can be taken as input. In
Sec. V, we will show a demonstration of the feasibility of this
approach where constrained Hartree-Fock (CHF) calculations
of an atomic nucleus [46] are employed to produce the bench-
mark ρt (r) from a given vext,t . In the longer term, it would be
interesting to employ ab initio simulations as a benchmark.

C. Energy conservation

In this context, an interesting identity that has been first
introduced in Ref. [27] is worth discussing, because it is an
useful test of our numerical procedure. Let us assume that
ρt (r) is a number-preserving path, so that all densities are
normalized to the same number of particles. Let us consider
the fundamental DFT Euler equation [3]

δT [ρ]
δρ(r)

+ vKS([ρ], r) = µ, (14)

where µ is the chemical potential. Then, we can multiply
Eq. (14) by dρt

dt and integrate over both t and r. Since µt is
independent from r and

∫
drρt (r) is a constant with respect

to t , the right-hand side vanishes. It follows immediately that

#T = −
∫ B

A
dt

∫
dr vKS([ρt (r)], r)

dρt (r)
dt

. (15)

Note that the right-hand side of this equation is different
from that of Eq. (11) and it is equal to −#UKS = −[#F +
#Uext]. The total variation of the energy #T + #UKS = 0
is conserved as it should since the chosen path comes from
a minimization of Eq. (2) for each value of t . Therefore,
this relation is a conservation law that holds on density and
potential paths ρt and vKS[ρt ]. It is potentially well suited to
test the correctness of the implementation of both the D2P step
and Eq. (11). Indeed, as detailed in Sec. IV below, from an
IKS calculation both the KS potential and the kinetic energy
are obtained. One can then compare #T = T [ρB] − T [ρA] to
the integral on the right-hand side of Eq. (15), thus gaining
information on the relative numerical accuracy of the two
procedures (Sec. V).

IV. CONSTRAINED-VARIATIONAL METHOD

In this section, the formalism and the implementation of
the CV method [1,15] are reviewed. In the KS scheme [3], a
system of N independent particles is first considered, which
is described by a set of s.p. orbitals φα (r). The independent-
particle kinetic energy is then a functional of the orbitals and
reads

T [{φα (r)}] = − h̄2

2m

N∑

α=1

∫
dr φ∗

α (r)∇2φα (r). (16)

Suppose that the g.s. density of the system ρ(r) (1) be equal
to a given target density ρ̃(r). Such density may be known

from experiment or an ab initio calculation. Under these as-
sumptions, the g.s. is characterized by the condition that the
kinetic energy (as a functional of the orbitals) is minimized
under the constraint ρ(r) = ρ̃(r). Moreover, the additional or-
thonormality constraints

∫
dr φ∗

α (r)φβ (r) = δαβ are imposed
on the orbitals. The problem has the form of a constrained
variation of an integral functional. The Lagrange multipliers
method allows to convert it into the free optimization of the
objective functional

J[{φα (r)}; vKS(r), {εαβ}] = T [{φα (r)}]

+
∫

dr vKS(r)[ρ(r) − ρ̃(r)]

−
∑

α<β

εαβ

(∫
dr φ∗

α (r)φβ (r) − δαβ

)
.

(17)

We stress that J is a functional of the additional variables
vKS(r) and of εαβ . We have readily identified the Lagrange
multiplier associated to the density constraint with the KS po-
tential vKS. These two quantities coincide only if the minimum
of J has been obtained.

By solving δJ = 0 plus the subsidiary conditions, the value
of the orbitals and of the multipliers can be determined. The
Euler-Lagrange equations for J read

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) =

∑

β

εαβφβ (r). (18)

These are s.p. Schrödinger equations in a noncanonical form
[27]. After these have been solved, a diagonalization of the
ε matrix allows us to determine the canonical eigenfunctions
and the s.p. energies, which satisfy

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) = λαφα (r). (19)

Thus, Eq. (19) confirms the physical interpretation of the
Lagrange multipliers.

In practice, works on the nuclear IKS problem have
focused on spherically symmetric systems [15,16]. In the fol-
lowing, we will apply the method to the case of the closed
shell nucleus 16O. While our code is computationally cheap
and can be easily applied to heavy nuclei [15], further de-
velopments would be required to extend the approach to
deformed or open-shell nuclei.

As a consequence of the spherical symmetry, the problem
simplifies to a one-dimensional radial equation, and the labels
α,β will correspond to the usual quantum numbers (nl j) with
the standard shell-model ordering. The angular and spin parts
of the wave functions are then known, and only the radial
functions uα (r) have to be determined. The orthonormality
conditions have to be imposed only if lα = lβ and jα = jβ and
read

∫ +∞
0 dr uα (r)uβ (r) = δnαnβ

. We note here that the inclu-
sion of a spin-orbit potential is left for future developments.
The KS potential is then orbital independent.

The numerical implementation is based on a discretization
scheme, where the radial functions and the input density are
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However, Eq. (11) specifically requires the knowledge of v[ρ]
alone. While we cannot suggest a general solution, we propose
a way to circumvent this difficulty in specific cases. Indeed,
the freedom in the choice of the density path has to be ex-
ploited. Theoretical calculations of the systems under study,
subject to a known external potential vext,t , can be performed
and the corresponding densities ρt (r) can be taken as input. In
Sec. V, we will show a demonstration of the feasibility of this
approach where constrained Hartree-Fock (CHF) calculations
of an atomic nucleus [46] are employed to produce the bench-
mark ρt (r) from a given vext,t . In the longer term, it would be
interesting to employ ab initio simulations as a benchmark.

C. Energy conservation

In this context, an interesting identity that has been first
introduced in Ref. [27] is worth discussing, because it is an
useful test of our numerical procedure. Let us assume that
ρt (r) is a number-preserving path, so that all densities are
normalized to the same number of particles. Let us consider
the fundamental DFT Euler equation [3]

δT [ρ]
δρ(r)

+ vKS([ρ], r) = µ, (14)

where µ is the chemical potential. Then, we can multiply
Eq. (14) by dρt

dt and integrate over both t and r. Since µt is
independent from r and

∫
drρt (r) is a constant with respect

to t , the right-hand side vanishes. It follows immediately that

#T = −
∫ B

A
dt

∫
dr vKS([ρt (r)], r)

dρt (r)
dt

. (15)

Note that the right-hand side of this equation is different
from that of Eq. (11) and it is equal to −#UKS = −[#F +
#Uext]. The total variation of the energy #T + #UKS = 0
is conserved as it should since the chosen path comes from
a minimization of Eq. (2) for each value of t . Therefore,
this relation is a conservation law that holds on density and
potential paths ρt and vKS[ρt ]. It is potentially well suited to
test the correctness of the implementation of both the D2P step
and Eq. (11). Indeed, as detailed in Sec. IV below, from an
IKS calculation both the KS potential and the kinetic energy
are obtained. One can then compare #T = T [ρB] − T [ρA] to
the integral on the right-hand side of Eq. (15), thus gaining
information on the relative numerical accuracy of the two
procedures (Sec. V).

IV. CONSTRAINED-VARIATIONAL METHOD

In this section, the formalism and the implementation of
the CV method [1,15] are reviewed. In the KS scheme [3], a
system of N independent particles is first considered, which
is described by a set of s.p. orbitals φα (r). The independent-
particle kinetic energy is then a functional of the orbitals and
reads

T [{φα (r)}] = − h̄2

2m

N∑

α=1

∫
dr φ∗

α (r)∇2φα (r). (16)

Suppose that the g.s. density of the system ρ(r) (1) be equal
to a given target density ρ̃(r). Such density may be known

from experiment or an ab initio calculation. Under these as-
sumptions, the g.s. is characterized by the condition that the
kinetic energy (as a functional of the orbitals) is minimized
under the constraint ρ(r) = ρ̃(r). Moreover, the additional or-
thonormality constraints

∫
dr φ∗

α (r)φβ (r) = δαβ are imposed
on the orbitals. The problem has the form of a constrained
variation of an integral functional. The Lagrange multipliers
method allows to convert it into the free optimization of the
objective functional

J[{φα (r)}; vKS(r), {εαβ}] = T [{φα (r)}]

+
∫

dr vKS(r)[ρ(r) − ρ̃(r)]

−
∑

α<β

εαβ

(∫
dr φ∗

α (r)φβ (r) − δαβ

)
.

(17)

We stress that J is a functional of the additional variables
vKS(r) and of εαβ . We have readily identified the Lagrange
multiplier associated to the density constraint with the KS po-
tential vKS. These two quantities coincide only if the minimum
of J has been obtained.

By solving δJ = 0 plus the subsidiary conditions, the value
of the orbitals and of the multipliers can be determined. The
Euler-Lagrange equations for J read

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) =

∑

β

εαβφβ (r). (18)

These are s.p. Schrödinger equations in a noncanonical form
[27]. After these have been solved, a diagonalization of the
ε matrix allows us to determine the canonical eigenfunctions
and the s.p. energies, which satisfy

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) = λαφα (r). (19)

Thus, Eq. (19) confirms the physical interpretation of the
Lagrange multipliers.

In practice, works on the nuclear IKS problem have
focused on spherically symmetric systems [15,16]. In the fol-
lowing, we will apply the method to the case of the closed
shell nucleus 16O. While our code is computationally cheap
and can be easily applied to heavy nuclei [15], further de-
velopments would be required to extend the approach to
deformed or open-shell nuclei.

As a consequence of the spherical symmetry, the problem
simplifies to a one-dimensional radial equation, and the labels
α,β will correspond to the usual quantum numbers (nl j) with
the standard shell-model ordering. The angular and spin parts
of the wave functions are then known, and only the radial
functions uα (r) have to be determined. The orthonormality
conditions have to be imposed only if lα = lβ and jα = jβ and
read

∫ +∞
0 dr uα (r)uβ (r) = δnαnβ

. We note here that the inclu-
sion of a spin-orbit potential is left for future developments.
The KS potential is then orbital independent.

The numerical implementation is based on a discretization
scheme, where the radial functions and the input density are
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However, Eq. (11) specifically requires the knowledge of v[ρ]
alone. While we cannot suggest a general solution, we propose
a way to circumvent this difficulty in specific cases. Indeed,
the freedom in the choice of the density path has to be ex-
ploited. Theoretical calculations of the systems under study,
subject to a known external potential vext,t , can be performed
and the corresponding densities ρt (r) can be taken as input. In
Sec. V, we will show a demonstration of the feasibility of this
approach where constrained Hartree-Fock (CHF) calculations
of an atomic nucleus [46] are employed to produce the bench-
mark ρt (r) from a given vext,t . In the longer term, it would be
interesting to employ ab initio simulations as a benchmark.

C. Energy conservation

In this context, an interesting identity that has been first
introduced in Ref. [27] is worth discussing, because it is an
useful test of our numerical procedure. Let us assume that
ρt (r) is a number-preserving path, so that all densities are
normalized to the same number of particles. Let us consider
the fundamental DFT Euler equation [3]

δT [ρ]
δρ(r)

+ vKS([ρ], r) = µ, (14)

where µ is the chemical potential. Then, we can multiply
Eq. (14) by dρt

dt and integrate over both t and r. Since µt is
independent from r and

∫
drρt (r) is a constant with respect

to t , the right-hand side vanishes. It follows immediately that

#T = −
∫ B

A
dt

∫
dr vKS([ρt (r)], r)

dρt (r)
dt

. (15)

Note that the right-hand side of this equation is different
from that of Eq. (11) and it is equal to −#UKS = −[#F +
#Uext]. The total variation of the energy #T + #UKS = 0
is conserved as it should since the chosen path comes from
a minimization of Eq. (2) for each value of t . Therefore,
this relation is a conservation law that holds on density and
potential paths ρt and vKS[ρt ]. It is potentially well suited to
test the correctness of the implementation of both the D2P step
and Eq. (11). Indeed, as detailed in Sec. IV below, from an
IKS calculation both the KS potential and the kinetic energy
are obtained. One can then compare #T = T [ρB] − T [ρA] to
the integral on the right-hand side of Eq. (15), thus gaining
information on the relative numerical accuracy of the two
procedures (Sec. V).

IV. CONSTRAINED-VARIATIONAL METHOD

In this section, the formalism and the implementation of
the CV method [1,15] are reviewed. In the KS scheme [3], a
system of N independent particles is first considered, which
is described by a set of s.p. orbitals φα (r). The independent-
particle kinetic energy is then a functional of the orbitals and
reads

T [{φα (r)}] = − h̄2

2m

N∑

α=1

∫
dr φ∗

α (r)∇2φα (r). (16)

Suppose that the g.s. density of the system ρ(r) (1) be equal
to a given target density ρ̃(r). Such density may be known

from experiment or an ab initio calculation. Under these as-
sumptions, the g.s. is characterized by the condition that the
kinetic energy (as a functional of the orbitals) is minimized
under the constraint ρ(r) = ρ̃(r). Moreover, the additional or-
thonormality constraints

∫
dr φ∗

α (r)φβ (r) = δαβ are imposed
on the orbitals. The problem has the form of a constrained
variation of an integral functional. The Lagrange multipliers
method allows to convert it into the free optimization of the
objective functional

J[{φα (r)}; vKS(r), {εαβ}] = T [{φα (r)}]

+
∫

dr vKS(r)[ρ(r) − ρ̃(r)]

−
∑

α<β

εαβ

(∫
dr φ∗

α (r)φβ (r) − δαβ

)
.

(17)

We stress that J is a functional of the additional variables
vKS(r) and of εαβ . We have readily identified the Lagrange
multiplier associated to the density constraint with the KS po-
tential vKS. These two quantities coincide only if the minimum
of J has been obtained.

By solving δJ = 0 plus the subsidiary conditions, the value
of the orbitals and of the multipliers can be determined. The
Euler-Lagrange equations for J read

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) =

∑

β

εαβφβ (r). (18)

These are s.p. Schrödinger equations in a noncanonical form
[27]. After these have been solved, a diagonalization of the
ε matrix allows us to determine the canonical eigenfunctions
and the s.p. energies, which satisfy

− h̄2

2m
∇2φα (r) + vKS(r)φα (r) = λαφα (r). (19)

Thus, Eq. (19) confirms the physical interpretation of the
Lagrange multipliers.

In practice, works on the nuclear IKS problem have
focused on spherically symmetric systems [15,16]. In the fol-
lowing, we will apply the method to the case of the closed
shell nucleus 16O. While our code is computationally cheap
and can be easily applied to heavy nuclei [15], further de-
velopments would be required to extend the approach to
deformed or open-shell nuclei.

As a consequence of the spherical symmetry, the problem
simplifies to a one-dimensional radial equation, and the labels
α,β will correspond to the usual quantum numbers (nl j) with
the standard shell-model ordering. The angular and spin parts
of the wave functions are then known, and only the radial
functions uα (r) have to be determined. The orthonormality
conditions have to be imposed only if lα = lβ and jα = jβ and
read

∫ +∞
0 dr uα (r)uβ (r) = δnαnβ

. We note here that the inclu-
sion of a spin-orbit potential is left for future developments.
The KS potential is then orbital independent.

The numerical implementation is based on a discretization
scheme, where the radial functions and the input density are
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FIG. 1. The potential derived from ρµ by the IKS procedure
(vKS), the CHF potential vCHF and v = vKS,µ − µr2 are compared for
µ = −0.2 MeV fm−2.

A family of scaled densities are generated by means of
constrained Hartree-Fock (CHF) calculations [46,52]. CHF
involves adding an external one-body perturbation to the
system and solving the resulting KS equations that now
include the external potential. As a perturbation, a har-
monic external potential vext,µ(r) = µr2, with µ in the range
[−0.25,0.25] MeV fm−2 is employed. The physical meaning
is that of driving a scaling of the radius (and of the whole
nuclear density) with respect to the unperturbed case. This
approach has its original motivation in the study of monopole
deformations [45]. The true ground state of the system is given
by µ = 0 and is an absolute minimum of the energy T + F .

We remind readers that the potential obtained from Eq. (11)
is well defined, since we are employing densities that es-
sentially stem from the solution of a KS problem. The KS
potential is then, by definition, the functional derivative of the
EDF, and the path independence of the integral is guaranteed.

The D2P inversion is performed by means of the CV
method described in Sec. IV, which provides both the effec-
tive KS potential vKS and the kinetic energy associated to the
neutron density.

B. Potentials

To exemplify the subtle point concerning the difference
between vKS and v[ρ] (Sec. III), in Figs. 1 and 2 the
CHF potential for either µ = −0.2 or µ = 0.2 MeV fm−2

is compared to the IKS potential (KS). The two functions
are clearly different, while the third curve v[ρµ] = vKS,µ −
vext,µ = vKS,µ − µr2, defined by subtracting the harmonic
term from the IKS potential, matches rather well the CHF
potential. This proves the accuracy of the CV method.

From now on, only the self-consistent part of the potential,
v[ρµ], shall be displayed. In Fig. 3, three densities (top) and
the corresponding potentials (bottom), determined by means
of the CV inversion, are compared for three different values
of µ. A positive value µ > 0 acts as a confining potential

FIG. 2. Same as Fig. 1, but for µ = 0.2 MeV fm−2.

and as a consequence leads to a more compact density profile
than in the unperturbed case. Conversely, a repulsive external
potential (µ < 0) leads to systems which are more spread out.
Consequently, in the latter case the density peak in the interior
of the nucleus is less pronounced.

C. Line integration

We can now move on to the study of the P2E and the
line integration formula. A preliminary test is presented in
Fig. 4. There, the function Iµ(R) (12) is plotted as a function
of the radius R in the cases µ = −0.2, 0, 0.2 MeV fm−2. Our
concern here is that of verifying the asymptotic convergence
of Iµ to a constant for large R. Indeed, the convergence is quite
fast and a stable result is reached already for R = 4 fm. We

FIG. 3. 16O neutron densities (top) and corresponding self-
consistent potentials (bottom) for three values of the perturbation
strength µ (in MeV fm−2).
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THE LINE INTEGRATION FORMULA If one knows the effective potential v[ρ] along a path of densities, then 
the corresponding change in the energy functional can be reconstructed. 

⇒ one-parameter family of densities:
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From the universal part F that ultimately stems from all
the interparticle interactions, we define the potential v (also
named self-consistent potential in what follows),

v([ρ]; r) = δF
δρ(r)

. (6)

On the other hand, the external potential vext (r) and the exter-
nal contribution to the total energy are related by

Vext =
∫

d3r vext (r)ρ(r) (7)

vext (r) = δVext

δρ(r)
. (8)

Applying the variational principle to Eq. (2) leads to the
following KS equations for the s.p. orbitals:

(
− h̄2

2m
∇2 + vKS

)
φi = εiφi, (9)

vKS = v[ρ] + vext. (10)

The KS potential vKS is the sum of the self-consistent potential
and the external term. The latter is a function of the position
only, while the former also depends on the density.

After setting the framework, we can now focus on the rela-
tion between the self-consistent potential and the EDF, namely
the aforementioned line integration formula. In Ref. [23] (cf.
also Ref. [24]), it is shown that if one knows the effective
potential v[ρ] along a path of densities, then the correspond-
ing change in the energy functional can be reconstructed.
In particular, a one-parameter family of densities is consid-
ered. Accordingly, we shall write the densities as ρt (r), with
A ! t ! B. The reconstruction formula has been discussed in
[23,24], which focus on electronic DFT, for the exchange-
correlation part of the functional only. On the same grounds,
we can write the following formula for F :

F [ρB] − F [ρA] =
∫ B

A
dt

∫
d3r v([ρt (r)], r)

dρt (r)
dt

. (11)

This formula actually holds for any functional F of the
density and of its gradients. The result of Eq. (11) is well
defined by construction, since v[ρ] is defined as the functional
derivative of F (see also our discussion in Sec. III C).

We also remind readers that EDFs are generally written as
the integral of an energy density f

F [ρ] =
∫

d3r f (r, ρ,∇ρ, . . .).

which is unique up to a gauge transformation; i.e., F [ρ] does
not change if f is replaced by f + ∇ · θ for some function θ
that vanishes at infinity.

For later convenience, we also define It (R) by means of

It (R) =
∫ R

0
drr2

∫
d& v([ρt (r)], r)

dρt (r)
dt

, (12)

where & is the solid angle and R is the radial upper bound
for the numerical integration. We expect It (R) to be a con-
vergent function as R goes to infinity. Then, (11) can also be

written as

F [ρB] − F [ρA] =
∫ B

A
dt It (R −→ +∞). (13)

In principle, any reasonable density path could be chosen in
order to perform the line integral. Three specific paths were
discussed in Ref. [24]. Our actual choice of the density path
shall be discussed below.

The line integration formula, so far, has been mostly
employed in cases where an analytical dependence of the
effective potential with respect to the density is given; see
Ref. [24]. The same perspective is taken by the Levy-Perdew
virial relation [39,40] between exchange potential and ex-
change energy, where the energy can be deduced from the
potential evaluated for just one density. In passing, we men-
tion that line integration techniques have found applications
also in constructing approximation to the nonlocal kinetic
energy in orbital free DFT [41,42].

Our idea is to move one step forward: The formula (11)
shall be applied to cases where such prior analytic knowledge
about v[ρ] is not available. Although in this case the inde-
pendence of Eq. (11) from the choice of the density path is
in principle not guaranteed, in our application this problem
will not arise, as will be detailed in Sec. IV. Specifically, the
relation between densities and potentials shall be defined by a
numerical inversion procedure.

III. CONCEPTUAL REMARKS

We present here some remarks that concern the validity of
the line integration formula.

A. v-representable solutions

The first question concerns the choice of the density path.
While it is simple to design a path ρt (r) that includes only
N-representable densities, it is not possible to guarantee, in
general, that the path avoids densities that are not v repre-
sentable [43]. From a physical viewpoint, a reasonable and
somehow conservative choice may be that of spanning a path
of densities that are close to the actual ground-state density of
a given system or to a realistic approximation thereof, e.g., as
it may be determined by an ab initio calculation. A theorem
by Kohn [44] gives theoretical support to our argument.

As an example, in Sec. V results will be presented for
densities originating from monopole deformations of a nu-
cleus [45]. In this case, the existence of a wide literature
on the effects of small variations of the shape of a nucleus
around its equilibrium state can be exploited to design clever
and physically motivated density paths. To sum up, we are
confident that a sound physical intuition of the systems at hand
allows to avoid the v-representability problem.

B. Self-consistent potential

The second question is a key issue for our discussion. The
D2P solution allows us to determine the KS potential of (10),
that is,

vKS = v[ρ] + vext.
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From the universal part F that ultimately stems from all
the interparticle interactions, we define the potential v (also
named self-consistent potential in what follows),

v([ρ]; r) = δF
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. (6)

On the other hand, the external potential vext (r) and the exter-
nal contribution to the total energy are related by

Vext =
∫

d3r vext (r)ρ(r) (7)

vext (r) = δVext
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. (8)

Applying the variational principle to Eq. (2) leads to the
following KS equations for the s.p. orbitals:
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2m
∇2 + vKS
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φi = εiφi, (9)

vKS = v[ρ] + vext. (10)

The KS potential vKS is the sum of the self-consistent potential
and the external term. The latter is a function of the position
only, while the former also depends on the density.

After setting the framework, we can now focus on the rela-
tion between the self-consistent potential and the EDF, namely
the aforementioned line integration formula. In Ref. [23] (cf.
also Ref. [24]), it is shown that if one knows the effective
potential v[ρ] along a path of densities, then the correspond-
ing change in the energy functional can be reconstructed.
In particular, a one-parameter family of densities is consid-
ered. Accordingly, we shall write the densities as ρt (r), with
A ! t ! B. The reconstruction formula has been discussed in
[23,24], which focus on electronic DFT, for the exchange-
correlation part of the functional only. On the same grounds,
we can write the following formula for F :

F [ρB] − F [ρA] =
∫ B
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dt

. (11)

This formula actually holds for any functional F of the
density and of its gradients. The result of Eq. (11) is well
defined by construction, since v[ρ] is defined as the functional
derivative of F (see also our discussion in Sec. III C).

We also remind readers that EDFs are generally written as
the integral of an energy density f

F [ρ] =
∫

d3r f (r, ρ,∇ρ, . . .).

which is unique up to a gauge transformation; i.e., F [ρ] does
not change if f is replaced by f + ∇ · θ for some function θ
that vanishes at infinity.

For later convenience, we also define It (R) by means of

It (R) =
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0
drr2
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for the numerical integration. We expect It (R) to be a con-
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discussed in Ref. [24]. Our actual choice of the density path
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employed in cases where an analytical dependence of the
effective potential with respect to the density is given; see
Ref. [24]. The same perspective is taken by the Levy-Perdew
virial relation [39,40] between exchange potential and ex-
change energy, where the energy can be deduced from the
potential evaluated for just one density. In passing, we men-
tion that line integration techniques have found applications
also in constructing approximation to the nonlocal kinetic
energy in orbital free DFT [41,42].

Our idea is to move one step forward: The formula (11)
shall be applied to cases where such prior analytic knowledge
about v[ρ] is not available. Although in this case the inde-
pendence of Eq. (11) from the choice of the density path is
in principle not guaranteed, in our application this problem
will not arise, as will be detailed in Sec. IV. Specifically, the
relation between densities and potentials shall be defined by a
numerical inversion procedure.

III. CONCEPTUAL REMARKS

We present here some remarks that concern the validity of
the line integration formula.

A. v-representable solutions

The first question concerns the choice of the density path.
While it is simple to design a path ρt (r) that includes only
N-representable densities, it is not possible to guarantee, in
general, that the path avoids densities that are not v repre-
sentable [43]. From a physical viewpoint, a reasonable and
somehow conservative choice may be that of spanning a path
of densities that are close to the actual ground-state density of
a given system or to a realistic approximation thereof, e.g., as
it may be determined by an ab initio calculation. A theorem
by Kohn [44] gives theoretical support to our argument.

As an example, in Sec. V results will be presented for
densities originating from monopole deformations of a nu-
cleus [45]. In this case, the existence of a wide literature
on the effects of small variations of the shape of a nucleus
around its equilibrium state can be exploited to design clever
and physically motivated density paths. To sum up, we are
confident that a sound physical intuition of the systems at hand
allows to avoid the v-representability problem.

B. Self-consistent potential

The second question is a key issue for our discussion. The
D2P solution allows us to determine the KS potential of (10),
that is,

vKS = v[ρ] + vext.
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From the universal part F that ultimately stems from all
the interparticle interactions, we define the potential v (also
named self-consistent potential in what follows),

v([ρ]; r) = δF
δρ(r)

. (6)

On the other hand, the external potential vext (r) and the exter-
nal contribution to the total energy are related by

Vext =
∫

d3r vext (r)ρ(r) (7)

vext (r) = δVext

δρ(r)
. (8)

Applying the variational principle to Eq. (2) leads to the
following KS equations for the s.p. orbitals:

(
− h̄2

2m
∇2 + vKS

)
φi = εiφi, (9)

vKS = v[ρ] + vext. (10)

The KS potential vKS is the sum of the self-consistent potential
and the external term. The latter is a function of the position
only, while the former also depends on the density.

After setting the framework, we can now focus on the rela-
tion between the self-consistent potential and the EDF, namely
the aforementioned line integration formula. In Ref. [23] (cf.
also Ref. [24]), it is shown that if one knows the effective
potential v[ρ] along a path of densities, then the correspond-
ing change in the energy functional can be reconstructed.
In particular, a one-parameter family of densities is consid-
ered. Accordingly, we shall write the densities as ρt (r), with
A ! t ! B. The reconstruction formula has been discussed in
[23,24], which focus on electronic DFT, for the exchange-
correlation part of the functional only. On the same grounds,
we can write the following formula for F :

F [ρB] − F [ρA] =
∫ B

A
dt

∫
d3r v([ρt (r)], r)

dρt (r)
dt

. (11)

This formula actually holds for any functional F of the
density and of its gradients. The result of Eq. (11) is well
defined by construction, since v[ρ] is defined as the functional
derivative of F (see also our discussion in Sec. III C).

We also remind readers that EDFs are generally written as
the integral of an energy density f

F [ρ] =
∫

d3r f (r, ρ,∇ρ, . . .).

which is unique up to a gauge transformation; i.e., F [ρ] does
not change if f is replaced by f + ∇ · θ for some function θ
that vanishes at infinity.

For later convenience, we also define It (R) by means of

It (R) =
∫ R

0
drr2

∫
d& v([ρt (r)], r)

dρt (r)
dt

, (12)

where & is the solid angle and R is the radial upper bound
for the numerical integration. We expect It (R) to be a con-
vergent function as R goes to infinity. Then, (11) can also be

written as

F [ρB] − F [ρA] =
∫ B

A
dt It (R −→ +∞). (13)

In principle, any reasonable density path could be chosen in
order to perform the line integral. Three specific paths were
discussed in Ref. [24]. Our actual choice of the density path
shall be discussed below.

The line integration formula, so far, has been mostly
employed in cases where an analytical dependence of the
effective potential with respect to the density is given; see
Ref. [24]. The same perspective is taken by the Levy-Perdew
virial relation [39,40] between exchange potential and ex-
change energy, where the energy can be deduced from the
potential evaluated for just one density. In passing, we men-
tion that line integration techniques have found applications
also in constructing approximation to the nonlocal kinetic
energy in orbital free DFT [41,42].

Our idea is to move one step forward: The formula (11)
shall be applied to cases where such prior analytic knowledge
about v[ρ] is not available. Although in this case the inde-
pendence of Eq. (11) from the choice of the density path is
in principle not guaranteed, in our application this problem
will not arise, as will be detailed in Sec. IV. Specifically, the
relation between densities and potentials shall be defined by a
numerical inversion procedure.

III. CONCEPTUAL REMARKS

We present here some remarks that concern the validity of
the line integration formula.

A. v-representable solutions

The first question concerns the choice of the density path.
While it is simple to design a path ρt (r) that includes only
N-representable densities, it is not possible to guarantee, in
general, that the path avoids densities that are not v repre-
sentable [43]. From a physical viewpoint, a reasonable and
somehow conservative choice may be that of spanning a path
of densities that are close to the actual ground-state density of
a given system or to a realistic approximation thereof, e.g., as
it may be determined by an ab initio calculation. A theorem
by Kohn [44] gives theoretical support to our argument.

As an example, in Sec. V results will be presented for
densities originating from monopole deformations of a nu-
cleus [45]. In this case, the existence of a wide literature
on the effects of small variations of the shape of a nucleus
around its equilibrium state can be exploited to design clever
and physically motivated density paths. To sum up, we are
confident that a sound physical intuition of the systems at hand
allows to avoid the v-representability problem.

B. Self-consistent potential

The second question is a key issue for our discussion. The
D2P solution allows us to determine the KS potential of (10),
that is,

vKS = v[ρ] + vext.
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FIG. 1. The potential derived from ρµ by the IKS procedure
(vKS), the CHF potential vCHF and v = vKS,µ − µr2 are compared for
µ = −0.2 MeV fm−2.

A family of scaled densities are generated by means of
constrained Hartree-Fock (CHF) calculations [46,52]. CHF
involves adding an external one-body perturbation to the
system and solving the resulting KS equations that now
include the external potential. As a perturbation, a har-
monic external potential vext,µ(r) = µr2, with µ in the range
[−0.25,0.25] MeV fm−2 is employed. The physical meaning
is that of driving a scaling of the radius (and of the whole
nuclear density) with respect to the unperturbed case. This
approach has its original motivation in the study of monopole
deformations [45]. The true ground state of the system is given
by µ = 0 and is an absolute minimum of the energy T + F .

We remind readers that the potential obtained from Eq. (11)
is well defined, since we are employing densities that es-
sentially stem from the solution of a KS problem. The KS
potential is then, by definition, the functional derivative of the
EDF, and the path independence of the integral is guaranteed.

The D2P inversion is performed by means of the CV
method described in Sec. IV, which provides both the effec-
tive KS potential vKS and the kinetic energy associated to the
neutron density.

B. Potentials

To exemplify the subtle point concerning the difference
between vKS and v[ρ] (Sec. III), in Figs. 1 and 2 the
CHF potential for either µ = −0.2 or µ = 0.2 MeV fm−2

is compared to the IKS potential (KS). The two functions
are clearly different, while the third curve v[ρµ] = vKS,µ −
vext,µ = vKS,µ − µr2, defined by subtracting the harmonic
term from the IKS potential, matches rather well the CHF
potential. This proves the accuracy of the CV method.

From now on, only the self-consistent part of the potential,
v[ρµ], shall be displayed. In Fig. 3, three densities (top) and
the corresponding potentials (bottom), determined by means
of the CV inversion, are compared for three different values
of µ. A positive value µ > 0 acts as a confining potential

FIG. 2. Same as Fig. 1, but for µ = 0.2 MeV fm−2.

and as a consequence leads to a more compact density profile
than in the unperturbed case. Conversely, a repulsive external
potential (µ < 0) leads to systems which are more spread out.
Consequently, in the latter case the density peak in the interior
of the nucleus is less pronounced.

C. Line integration

We can now move on to the study of the P2E and the
line integration formula. A preliminary test is presented in
Fig. 4. There, the function Iµ(R) (12) is plotted as a function
of the radius R in the cases µ = −0.2, 0, 0.2 MeV fm−2. Our
concern here is that of verifying the asymptotic convergence
of Iµ to a constant for large R. Indeed, the convergence is quite
fast and a stable result is reached already for R = 4 fm. We

FIG. 3. 16O neutron densities (top) and corresponding self-
consistent potentials (bottom) for three values of the perturbation
strength µ (in MeV fm−2).
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16O → monopole constrained densities ρµ and the 
corresponding potentials v = vKS,µ− µr2, for µ = −0.2, 0, 0.2 
MeV fm−2.
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QRPA + QPVC calculation of ISGMR in Ca, Sn and Pb → 
coupling with phonons Jπ = 0+, 1-, 2+, 3-, 4+, 5- (E < 30 MeV).Why is tin so soft?

2

FIG. 1. (Color online) ISGMR strength functions in even-even 112-124Sn, 48Ca, and 208Pb isotopes, calculated either by (Q)RPA using a
smoothing with Lorentzian having a width of 1 MeV (dash-dotted [black] line), or (Q)RPA+(Q)PVC (solid [blue] line). The SV-K226 Skyrme
force is used. The experimental data are given by green crosses [8, 15, 39].

We start from the spherical SHFB code in the coordinate
space from Ref. [40]. The so-called volume pairing force,
vpp(rrr1,rrr2) = V0,qδ(rrr1 −rrr2), is used to describe the pairing in-
teraction, where q labels either neutrons or protons. V0,q is
adjusted by fitting the pairing gaps according to the five-point
formula [41]. The QRPA equations are solved in the canonical
basis. The spurious state, caused by the violation of particle
number, is removed as in Ref. [23]. On top of QRPA, we have
included the coupling with phonons having Jπ = 0+, 1−, 2+,
3−, 4+, and 5− with energy less than 30 MeV and exhausting a
fraction of non-energy-weighted (isoscalar or isovector) sum
rule larger than 2%. The subtraction procedure is adopted, as
described in [42]. Further numerical details are provided in
the Supplemental Material, where we also show that the final
numerical results are stable with respect to the choice of the
model space.

The sum rules, or k-th moments of the strength func-
tion S (E) are defined as mk =

∫ ∞
0

S (E)EkdE. In our case,

S (E) is with respect to the operator F̂00 =
∑A

i=1 r2
i . The ful-

fillment of the energy-weighted sum rule m1 (%), and in-
verse energy-weighted sum rule m−1 (fm4/MeV), calculated
by QRPA+QPVC, have been checked (Seeing Supplemental
Material). There are many choices of characteristic energy
for GRs, such as the centroid energy m1/m0, the constrained
energy

√
m1/m−1, and the scaling energy

√
m3/m1. In the

following, we will use the constrained energy
√

m1/m−1 for
our discussion since m−1 is unchanged in the case of QPVC

with subtraction. Our conclusions would remain the same if
we were to choose another definition for the ISGMR energy.
The ISGMR energies are calculated in the energy interval 10–
30 MeV for Ca, and 5–25 MeV for Sn and Pb, because the
strength is negligible outside these intervals.

In Fig. 1, we show the strength functions of the ISGMR, ob-
tained either in the framework of (Q)RPA by using a smooth-
ing with Lorentzians having a width of 1 MeV (dash-dotted
[black] line), or within (Q)RPA+(Q)PVC (solid [blue] line),
using the SV-K226 Skyrme force, in the even-even 112-124Sn,
48Ca, and 208Pb nuclei. We compare the results with the ex-
perimental ones ([green] crosses) [8, 15, 39]. In general, with
the inclusion of (Q)PVC effects, the results are significantly
improved with respect to (Q)RPA, so we can achieve a good
description of data both in the light 48Ca isotope, medium-
heavy Sn isotopes, and heavy 208Pb. In 112−124Sn, QRPA gives
one small peak and one higher peak while the experimental
strength displays a broad single peak. The ISGMR energies
are higher than the experimental ones, as pointed out in pre-
vious papers [17, 19]. With the inclusion of QPVC effects,
widths are comparable with the experimental ones (cf. also
[43]). Moreover, within the self-consistent QRPA+QPVC
model, the downward shifts of energies by 0.7–0.8 MeV (with
respect to QRPA) make the ISGMR energies in agreement
with data, along the whole Sn isotopic chain. In the case of
48Ca, the strength function has two main peaks in the RPA cal-
culation, while the experimental strength shows only a single

Simultaneous description of ISGMR in Ca, Sn and Pb ⇒ K♾≈230 MeV.



Generalized time-dependent generator coordinate method 

Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C 108, 014321 (2023).

II. THEORETICAL FRAMEWORK: GENERALIZED TIME-DEPENDENT GCM

WITH PAIRING INTERACTIONS

The Griffin-Hill-Wheeler (GHW) ansatz for the TD-GCM correlated nuclear wave func-

tion reads [15, 18, 19]

|Ψ(t)⟩ =
∫

q

dq fq(t)|Φq(t)⟩, (1)

where the vector q denotes the continuous real generator coordinates that parametrize the

collective degrees of freedom. This wave function is a linear superposition of, general-

ly non-orthogonal, many-body generator states |Φq(t)⟩, and fq(t) are the corresponding

complex-valued weight functions. The generalized TD-GCM without the inclusion of pair-

ing correlations has been implemented in the first part of this work [1]. In this study, pairing

is also taken into account, and the discretized generator coordinates are the mass multipole

moments (axial quadrupole and octupole) of the nucleon density distribution. Thus, the

nuclear wave function

|Ψ(t)⟩ =
∑

q

fq(t)|Φq(t)⟩, (2)

is the solution of the time-dependent equation

i!∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩, (3)

where Ĥ is the Hamiltonian of the nuclear system. From a time-dependent variational

principle [19], one obtains the equation of motion for the weight functions

i!N ḟ = (H−HMF )f, (4)

which, in the discretized collective space, reads

∑

q

i!Nq′q(t)∂tfq(t) +
∑

q

HMF
q′q (t)fq(t) =

∑

q

Hq′q(t)fq(t). (5)

The time-dependent kernels

Nq′q(t) = ⟨Φq′(t)|Φq(t)⟩, (6a)

Hq′q(t) = ⟨Φq′(t)|Ĥ|Φq(t)⟩, (6b)

HMF
q′q (t) = ⟨Φq′(t)|i!∂t|Φq(t)⟩, (6c)

include the overlap, the Hamiltonian, and the time derivative of the generator states, re-

spectively.
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where Ĥ is the Hamiltonian of the nuclear system. From a time-dependent variational

principle [19], one obtains the equation of motion for the weight functions
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collective degrees of freedom. This wave function is a linear superposition of, general-

ly non-orthogonal, many-body generator states |Φq(t)⟩, and fq(t) are the corresponding
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is also taken into account, and the discretized generator coordinates are the mass multipole

moments (axial quadrupole and octupole) of the nucleon density distribution. Thus, the

nuclear wave function

|Ψ(t)⟩ =
∑

q

fq(t)|Φq(t)⟩, (2)

is the solution of the time-dependent equation

i!∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩, (3)

where Ĥ is the Hamiltonian of the nuclear system. From a time-dependent variational

principle [19], one obtains the equation of motion for the weight functions

i!N ḟ = (H−HMF )f, (4)

which, in the discretized collective space, reads

∑

q

i!Nq′q(t)∂tfq(t) +
∑

q

HMF
q′q (t)fq(t) =

∑

q

Hq′q(t)fq(t). (5)

The time-dependent kernels

Nq′q(t) = ⟨Φq′(t)|Φq(t)⟩, (6a)

Hq′q(t) = ⟨Φq′(t)|Ĥ|Φq(t)⟩, (6b)

HMF
q′q (t) = ⟨Φq′(t)|i!∂t|Φq(t)⟩, (6c)

include the overlap, the Hamiltonian, and the time derivative of the generator states, re-

spectively.
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…time-dependent kernels: 

The time-dependent 
generator states are 
independent TDDFT 
trajectories in the 
space of collective 
coordinates.     

…collective wave function:

where the Slater determinant |Φ̃q,k(t)⟩ is defined as

|Φ̃q,k(t)⟩ = [
µ̇q,k(t)√

|µ̇q,k(t)|2 + |ν̇q,k(t)|2
+

ν̇q,k(t)√
|µ̇q,k(t)|2 + |ν̇q,k(t)|2

c†q,k(t)c
†
q,k̄

(t)]

·
∏

j ̸=k,j>0

[µq,j(t) + νq,j(t)c
†
q,j(t)c

†
q,j̄(t)]|−⟩

(24)

Eq.(6c) can be written in the form

HMF
q′q (t) = ⟨Φq′(t)|i!∂t|Φq(t)⟩

= ⟨Φq′(t)|
lq∑

k

[ĥq(r, t)− εqk(t)]c
†
q,k(t)cq,k(t)|Φq(t)⟩

+ i!
∑

k>0

√
|µ̇q,k(t)|2 + |ν̇q,k(t)|2 ⟨Φq′(t)|Φ̃q,k(t)⟩.

(25)

By expanding [ĥq(r, t)− εqk(t)]c
†
q,k(t) in a complete basis c†q′,k′(t),

[ĥq(r, t)− εqk(t)]c
†
q,k(t) =

∑

k′

⟨φq′

k′(r, t)|[ĥ
q(r, t)− εqk(t)]|φ

q
k(r, t)⟩c

†
q′,k′(t), (26)

one obtains for HMF
q′q (t) the expression

HMF
q′q (t) = ⟨Φq′(t)|Φq(t)⟩ ·

lq′∑

k′

lq∑

k

⟨φq′

k′(r, t)|[ĥ
q(r, t)− εqk(t)]|φ

q
k(r, t)⟩ρ

tran
k′k (t)

+ i!
∑

k>0

√
|µ̇q,k(t)|2 + |ν̇q,k(t)|2 ⟨Φq′(t)|Φ̃q,k(t)⟩,

(27)

where µ̇q,k(t) and ν̇q,k(t) can be derived from Eq. (12), and ⟨Φq′(t)|Φ̃q,k(t)⟩ can be obtained

by the Pfaffian algorithms [24, 25].

E. Collective wave function g(t)

Equation (4) is not a collective Schrödinger equation, and the weight function fq(t)

is not a probability amplitude of finding the system at the collective coordinate q. The

corresponding collective wave function gq(t) is defined by the transformation [27]

g = N 1/2f, (28)

where N 1/2 is the square root of the overlap kernel matrix. Inserting Eq. (28) into Eq. (4),

the time evolution of the collective wave function is governed by the equation [19]

i!ġ = N−1/2(H −HMF )N−1/2g + i!Ṅ 1/2N−1/2g. (29)
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[ĥq(r, t)− εqk(t)]c
†
q,k(t) =

∑

k′

⟨φq′

k′(r, t)|[ĥ
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