

3x60 workshop

Milano Oct. 18, 2024

Driving with Ms. Silvia into Isotopic Ridges

Takaharu Otsuka

Supported by "Program for promoting research on the supercomputer Fugaku", MEXT, Japan (JPMXP1020230411)

What is "Isotopic Ridge"?

It is rather unexpected to see states of even-even nuclei at high excitation energies (~ 4-5 MeV > twice pairing gap) with distinct visible characters (such as "shape" or "isomer") with low spins (J~O) [a lot of cases with high spins] with systematic appearance in a chain of isotopes

Silvia led and drove us into the exploratory journey hunting for this!

Outline

- 1. Shell evolution Just a brief overview
- Type II Shell evolution
 A mechanism for shape coexistence illustrated with the example of ⁶⁸Ni
- Ni isotopes exhibit an Isotopic Ridge
 An angle to look into structure evolution in 62-78Ni isotopes
- 4. Another subject ...

Sec. 2 is based on collaboration with Y. Tsunoda (CNS, Tokyo), N. Shimizu (Tsukuba), M. Honma (Aizu) and Y. Utsuno (JAEA). Sec. 3 is based on collaboration with Y. Tsunoda (CNS, Tokyo), S. Leoni (Milano), B. Fornel (Krakow), N. Marginean (IFINHH, Bucharest) U.), R. Janssens (North Carolina), and many others.

Sec. 4 is based on collaboration with Y. Tsunoda (CNS, Tokyo), N. Shimizu (Tsukuba), Y. Utsuno (JAEA), T. Abe (Keio U.), H. Ueno (Riken)

We start with observed facts about the nuclear shell structure.

Excitation energies of the lowest excited 2⁺ states of even-even nuclei

Monopole interaction : angular averaged part of a given interaction

for Central force

Stronger attraction between single-particle orbits of similar radial wave functions ex.: $f_{7/2} - f_{5/2}$, $g_{9/2} - h_{11/2}$ cf: Federman-Pittel (1977)

for Three-nucleon force (Δ -hole): overall repulsive effect

Effects of these monopole interactions can be seen in terms of Effective Single-Particle Energy (ESPE) Sturm-Watt-Whitehead

J. Phys. G 43, 024009 (2016)

Not limited to magic numbers, ... shell structure changes

Probably (one of) the first systematic experimental studies

Volume 92, Number 16	PHYSICAL	REVIEW	LETTERS	week end 23 APRIL	ding 2004]
----------------------	----------	--------	---------	----------------------	--------------	---

Is the Nuclear Spin-Orbit Interaction Changing with Neutron Excess?

J. P. Schiffer,¹ S. J. Freeman,^{1,2} J. A. Caggiano,³ C. Deibel,³ A. Heinz,³ C.-L. Jiang,¹ R. Lewis,³ A. Parikh,³ P. D. Parker,³ K. E. Rehm,¹ S. Sinha,¹ and J. S. Thomas⁴

The shell evolution now occurs almost everywhere on the nuclear chart.

→one of the major subjects of RI-beam facilities for exotic nuclei

This word did not exist before 2004.

"Shell evolution"* : 0 hit in Google Scholar in 2003 1 2004

~140 hits/year ~2021

*Combine with "atomic nuclei", to avoid biology,

Earlier empirical analyses such as Grawe, Sorlin-Porquet, with different nomenclatures for instance, "orbital migration", ...

What about the "shell evolution" mechanism in other nuclear properties?

Outline

- 1. Shell evolution Just a brief overview
- Type II Shell evolution
 A mechanism for shape coexistence illustrated with the example of ⁶⁸Ni
- 3. Ni isotopes exhibit an Isotopic Ridge An angle to look into structure evolution in 62-78Ni isotopes
- 4. Another subject ...

Energy levels and B(E2) values of Ni isotopes as an example

Description by the Monte Carlo shell model with the A3DA-m Hamiltonian

Y. Tsunoda, TO, Shimizu, Honma and Utsuno, PRC 89, 031301 (R) (2014) Shape coexistence: traditional view

neutron number, N

FIG. 10. Systematics of excited states in the even-Hg isotopes. Note the "parabolic intrusion" of the closely spaced bands of states (marked with solid lines) with J = 0, 2, 4, ... centered on ¹⁸²Hg (N = 102). The data are taken from Nuclear Data Sheets. Some recent lifetime data can be found in Grahn *et al.* (2009).

Normal and intruder states in ⁶⁸Ni

0⁺₂ state (oblate)

2p2h+more excitations

Not 4p4h

ground state

(spherical

OpOh with 25% mixture of 2p2h excitation over N=40 gap

Non-linear enhancement of p-h excitations due to tensor force

TO and Y. Tsunoda, J. Phys. G: Nucl. Part. Phys. 43 (2016) 024009

Potential energy surface (PES)

Constrained Hartree-Fock calculation for the shell-model Hamiltonian with constraints by β_2 and γ .

Fig. 17 (left) Potential energy surface (PES) of ⁶⁸Ni. (Taken from Fig. 5 of Otsuka and Tsunoda 2016). (right) PES of ⁶⁸Ni for axially symmetric shapes. The solid line shows the PES of the full Hamiltonian, whereas the dashed line is the PES with practically no tensor force contribution. (Taken from Fig. 6 of Otsuka and Tsunoda 2016)

Outline

- 1. Shell evolution Just a brief overview
- 2. Type II Shell evolution

A mechanism for shape coexistence illustrated with the example of ⁶⁸Ni

3. Ni isotopes exhibit an Isotopic Ridge An angle to look into structure evolution in 62-78Ni isotopes

4. Another subject ...

Shape coexistence with known lowest excitation energy within Ni isotopes

Physics Letters B 765 (2017) 328-333

Type II shell evolution in A = 70 isobars from the $N \ge 40$ island of inversion

A.I. Morales ^{a,b,*}, G. Benzoni^a, H. Watanabe^{c,d}, Y. Tsunoda^e, T. Otsuka^{f,g,h}, S. Nishimura^d, F. Browne^{i,d}, R. Daido^j, P. Doornenbal^d, Y. Fang^j, G. Lorusso^d, Z. Patel^{k,d}, S. Rice^{k,d}, L. Sinclair^{1,d}, P.-A. Söderström^d, T. Sumikama^m, J. Wu^d, Z.Y. Xu^{f,d}, A. Yagi^j, R. Yokoyama^f, H. Baba^d, R. Avigo^{a,b}, F.L. Bello Garroteⁿ, N. Blasi^a, A. Bracco^{a,b}, F. Camera^{a,b}, S. Ceruti^{a,b}, F.C.L. Crespi^{a,b}, G. de Angelis^o, M.-C. Delattre^p, Zs. Dombradi^q, A. Gottardo^o, T. Isobe^d, I. Kojouharov^r, N. Kurz^r, I. Kuti^q, K. Matsui^f, B. Melon^s, D. Mengoni^{t,u}, T. Miyazaki^f, V. Modamio-Hoybjor^o, S. Momiyama^f, D.R. Napoli^o, M. Niikura^f, R. Orlandi^{h,v}, H. Sakurai^{d,f}, E. Sahinⁿ, D. Sohler^q, H. Schaffner^r, R. Taniuchi^f, J. Taprogge^{w,x}, Zs. Vajta^q, J.J. Valiente-Dobón^o, O. Wieland^a, M. Yalcinkaya^y

470

357

What happens in the other side of the magic number N = 40

Emergence of Shape Isomerism in Light Nuclei

S. Leoni,^{1,2,*} B. Fornal,³ N. Mărginean,⁴ M. Sferrazza,⁵ Y. Tsunoda,⁶ T. Otsuka,^{6,7,8,9} G. Bocchi,^{1,2} F. C. L. Crespi,^{1,2} A. Bracco,^{1,2} S. Aydin,¹⁰ M. Boromiza,^{4,11} D. Bucurescu,⁴ N. Cieplicka-Oryňczak,^{2,3} C. Costache,⁴ S. Călinescu,⁴ N. Florea,⁴ D. G. Ghiţă,⁴ T. Glodariu,⁴ A. Ionescu,^{4,11} Ł.W. Iskra,³ M. Krzysiek,³ R. Mărginean,⁴ C. Mihai,⁴ R. E. Mihai,⁴ A. Mitu,⁴ A. Negreț,⁴ C. R. Niţă,⁴ A. Olăcel,⁴ A. Oprea,⁴ S. Pascu,⁴ P. Petkov,⁴ C. Petrone,⁴ G. Porzio,^{1,2} A. Şerban,^{4,11} C. Sotty,⁴ L. Stan,⁴ I. Ştiru,⁴ L. Stroe,⁴ R. Şuvăilă,⁴ S. Toma,⁴ A. Turturică,⁴ S. Ujeniuc,⁴ and C. A. Ur¹²

Identification of nuclear shape by T-plot of MCSM

- Location of circle: shape quadrupole deformation of unprojected MCSM basis vector
- Area of circle: importance

overlap probability between each projected basis vector and the eigen wave function

• Potential energy surface (PES) is calculated by Constrained HF for the same interaction

angularmomentum, Slater parity projection determin $|\Psi\rangle = \sum_{n} f_{n} P^{J\pi} |\psi_{n}\rangle$ MCSM eigen wave function MCSM basis vector

T-plot of 0⁺ states of ⁷⁸Ni (Z=28, N=50)

Shape Coexistence at Zero Spin in ⁶⁴Ni Driven by the Monopole Tensor Interaction

N. Mărginean^{(1),*} D. Little,²³ Y. Tsunoda,⁴ S. Leoni⁽¹⁾,^{56,†} R. V. F. Janssens⁽²⁾,^{23,‡} B. Fornal⁽⁰⁾,^{7,§} T. Otsuka⁽²⁾,^{8,9,10,||}
C. Michelagnoli,¹¹ L. Stan,¹ F. C. L. Crespi,^{5,6} C. Costache,¹ R. Lica,¹ M. Sferrazza,¹² A. Turturica,¹ A. D. Ayangeakaa,¹³
K. Auranen,^{14,¶} M. Barani,^{5,6,11} P. C. Bender,¹⁵ S. Bottoni,^{5,6} M. Boromiza,¹ A. Bracco,^{5,6} S. Călinescu,¹ C. M. Campbell,¹⁶
M. P. Carpenter,¹⁴ P. Chowdhury,¹⁵ M. Ciemała,⁷ N. Cieplicka-Orynczak,⁷ D. Cline,¹⁷ C. Clisu,¹ H. L. Crawford,¹⁶
I. E. Dinescu,¹ J. Dudouet,¹⁸ D. Filipescu,¹ N. Florea,¹ A. M. Forney,¹⁹ S. Fracassetti,^{5,6,**} A. Gade,^{20,21} I. Gheorghe,¹ A. B. Hayes,²² I. Harca,¹ J. Henderson,²³ A. Ionescu,¹ Ł. W. Iskra,⁶ M. Jentschel,¹¹ F. Kandzia,¹¹ Y. H. Kim,¹¹
F. G. Kondev,¹⁴ G. Korschinek,²⁴ U. Köster,¹¹ Krishichayan,³ M. Krzysiek,⁷ T. Lauritsen,¹⁴ J. Li,^{14,††} R. Mărginean,¹
E. A. Maugeri,²⁵ C. Mihai,¹ R. E. Mihai,¹ A. Mitu,¹ P. Mutti,¹¹ A. Negret,¹ C. R. Niţă,¹ A. Olăcel,¹ A. Oprea,¹ S. Pascu,¹
C. Petrone,¹ C. Porzio,^{5,6} D. Rhodes,^{20,21} D. Seweryniak,¹⁴ D. Schumann,²⁵ C. Sotty,¹ S. M. Stolze,¹⁴ R. Şuvăilă,¹ S. Toma,¹
S. Ujeniuc,¹ W. B. Walters,¹⁹ C. Y. Wu,²³ J. Wu,¹⁴ S. Zhu,²² and S. Ziliani^{5,6}

Current edge : ⁶²Ni

Final picture of "Isotopic Ridge"

Thus, a "ridge" arises for Ni isotopes with gradually varying deformed shapes. ... splitting at the end, however

Probably, no ridges for Fe or Zn isotopes. (→ isotopic ridge, if you wish)

Neutron excitations from pf-shell to $g_{9/2}$ orbital are crucial.

The number of neutrons, or the neutron Fermi energy, directly affects as to how many neutrons are excited to $g_{9/2}$ orbital.

At N=34, the present triaxial states appear with $\beta_2 > 0.34$ with excitations to $g_{9/2}$ orbital. The middle of pf-shell is at N=30 \rightarrow triaxiality may be natural? The modestly deformed ($\beta_2 \sim 0.2$) prolate state appears mostly with the collectivity of pf-shell protons.

Further exploration for this hidden jewelry is an intriguing project ... thanks for Silvia's strong leadership

Isotopic ridges show up

at high excitation energies (> twice pairing gap) with distinct visible characters (e.g., shapes) with low spins (J~O) free from major mixings with systematic appearance in an isotopic chain They might give us a gateway to superdeformation.

because of high-j orbitals because of different occup. # because of monopole effects

PHYSICAL REVIEW C 94, 034301 (2016)

Single-particle and collective excitations in ⁶²Ni

M. Albers,¹ S. Zhu,¹ A. D. Ayangeakaa,¹ R. V. F. Janssens,¹ J. Gellanki,² I. Ragnarsson,³ M. Alcorta,^{1,*} T. Baugher,^{4,5}
P. F. Bertone,^{1,†} M. P. Carpenter,¹ C. J. Chiara,^{1,6,‡} P. Chowdhury,⁷ H. M. David,^{1,§} A. N. Deacon,⁸ B. DiGiovine,¹ A. Gade,^{4,5}
C. R. Hoffman,¹ F. G. Kondev,⁹ T. Lauritsen,¹ C. J. Lister,^{1,||} E. A. McCutchan,^{1,¶} C. Nair,¹ A. M. Rogers,^{1,||}
and D. Seweryniak¹

FIG. 4. Excitation energy versus spin for the two collective bands observed in the present measurement and for the ground-state bands in ⁵⁸Cr [25] and ⁶⁰Fe [27]. See text for details.

FIG. 2. Level scheme of ⁶²Ni deduced in the present work. The states are labeled with their spin and parity.

Outline

- 1. Shell evolution Just a brief overview
- 2. Type II Shell evolution

A mechanism for shape coexistence illustrated with the example of ⁶⁸Ni

3. Ni isotopes exhibit th an Isotropic Ridge An angle to look into structure evolution in 62-78Ni isotopes

4. Another subject ...

Before I finish, let me mention recent developments about shapes and rotations of atomic nuclei.

- 1. Rotational excitation energy proportional to $J(J+1) K^2$ is derived in quantum many-body framework, without resorting to the quantization of the free rotation of classical rigid body.
- 2. Triaxial deformation occurs in virtually all deformed nuclei, because it gives more binding energy than axially symmetric shapes. \rightarrow "basic triaxiality" It is not a fluctuation. The ground band of ¹⁵⁴Sm is an example, while side bands show shape coexistence with γ .
- 3. Stronger triaxiality occurs due to tensor (monopole) or central (hexadecupole) forces in some nuclei, at least in the ground bands of 13 rare-earth nuclei, such as ¹⁶⁶Er, ¹⁶⁴Dy, ¹⁵⁸Gd. → "prominent triaxiality"

We need Silvia's great initiative again for this challenging and exciting subject!

Reference:Prevailing Triaxial Shapes in Atomic Nuclei and a Quantum Theory of Rotation of Composite
Objects
arXiv:2303.11299v6 [nucl-th]

T. Otsuka,^{1,2,3,4,*} Y. Tsunoda,^{5,6} N. Shimizu,^{6,5} Y. Utsuno,^{7,5} T. Abe,^{8,2} and H. Ueno²

Happy 60th birthday for Franco, Gianluca, Silvia and be active like a dragon belong to this

Kaihou, Yushou (1533-1615), Ken-Nin Ji, Kyoto

海北友松作「双龍図襖絵」建仁寺 (写真撮影は講演者)