Life & Death of Superdeformed Nuclei

A. Lopez-Martens IJCLab, Orsay

Progress in Particle and Nuclear Physics Volume 89, July 2016, Pages 137-186

Review

Population and decay of superdeformed nuclei probed by discrete and quasicontinuum γ -ray spectroscopy

A. Lopez-Martens ^a $\stackrel{lpha}{\sim}$ \boxtimes , T. Lauritsen ^b, S. Leoni ^{c d}, T. Døssing ^e, T.L. Khoo ^b, S. Siem ^f

Discovery of Superdeformation

First observation of a fission isomer : ²⁴²Am

S. Polikanov et al. Sov. Phys. JETP 15 (1962)

Discovery of Superdeformation

First observation of a fission isomer : ²⁴²Am

S. Polikanov et al. Sov. Phys. JETP 15 (1962)

Discovery of Superdeformation

First observation of a fission isomer : ²⁴²Am

S. Polikanov et al. Sov. Phys. JETP 15 (1962)

Lifetime measurement of states in the 2nd well of ²³⁹Pu (charge plunger) $Q_0: 36 \pm 4 \text{ eb} \Rightarrow c/a \approx 2$

D. Habs, V. Metag, H.J. Specht and G. Ulfert, Phys. Rev. Lett. 38 (1977) 387

B.M. Nyako et al. Phys. Rev. Lett., 52:507, 1984

P.J. Twin et al. Phys. Rev. Lett., 57:811, 1986

B.M. Nyako et al. Phys. Rev. Lett., 52:507, 1984

'Top unexpected physics discoveries of the last five years' (D. Kleppner, Physics Today, 1991)

'Top unexpected physics discoveries of the last five years' (D. Kleppner, Physics Today, 1991)

K. Schiffer and B. Hershkind, Phys. Lett. B 255 (1991) 508

I(ħ)

40

60

20

0

'Top unexpected physics discoveries of the last five years' (D. Kleppner, Physics Today, 1991)

K. Schiffer and B. Hershkind, Phys. Lett. B 255 (1991) 508

I(ħ)

40

60

20

0

Modelling the population & decay

B. Herskind et al., Phys. Rev. Lett. 59 2416 (1987)

Main ingredients: ND & SD yrast lines, level densities, E1 & E2 decay, strength functions, tunneling & pairing

Modelling the population & decay

Main ingredients: ND & SD yrast lines, level densities, E1 & E2 decay, strength functions, tunneling & pairing

Superdeformed ¹⁴³Eu

A. Axelsson et al., Eur. Phys. J. A 6 175 (1999)

Detailed modelling of ¹⁴³Eu

Detailed modelling of ¹⁴³Eu

Evidence for the low-energy GDR component

452c

A. Bracco et al. / Nuclear Physics A682 (2001) 449c-457c

¹⁴³Eu: Only studied case to date

Evidence for the low-energy GDR component

452c

A. Bracco et al. /Nuclear Physics A682 (2001) 449c-457c

G. Benzoni et al., Phys. Lett. B 540 199 (2002)

Evidence for the low-energy GDR component

452c

A. Bracco et al. / Nuclear Physics A682 (2001) 449c-457c

A. Maj et al. Nuc. Phys. A, 731:319, 2004., M. Kmiecik et al. Acta Phys. Pol. B, 36:1169, 2005.

A. Lopez-Martens et al., Phys. Lett. B 380 18 (1996), K. Hauschild et al., Phys. Rev. C 55 2819 (1997)

A. Lopez-Martens et al., Phys. Lett. B 380 18 (1996), K. Hauschild et al., Phys. Rev. C 55 2819 (1997)

A. Lopez-Martens et al., Phys. Lett. B 380 18 (1996), K. Hauschild et al., Phys. Rev. C 55 2819 (1997)

Large hindrance to decay out : Extreme examples of shape coexistence

S. Leoni et al., Eur. Phys. J. Spec. Top. 233 1061 (2024)

A. Lopez-Martens et al., Phys. Lett. B 380 18 (1996),K. Hauschild et al., Phys. Rev. C 55 2819 (1997)

Large hindrance to decay out : Extreme examples of shape coexistence S. Leoni et al., Eur. Phys. J. Spec. Top. 233 1061 (2024)

A large fraction of the decay out transitions are unresolved

Quasicontinuum extraction & decomposition

Quasicontinuum extraction & decomposition

R.G. Henry et al., Phys. Rev. Lett. 73 777 (1992)

Quasicontinuum extraction & decomposition

Separation of various components only possible in mass A~190 region

R.G. Henry et al., Phys. Rev. Lett. 73 777 (1992)

Life & death of a superdeformed nucleus

Life & death of a superdeformed nucleus

How many decay out cascades ?

FLUCTUATION ANALYSIS METHOD (FAM)

T. Døssing, B. Herskind, S. Leoni et al. Phys. Rep. 268 (1996)

How many decay out cascades ?

correction factor P<1 needed

T. Døssing, B. Herskind, S. Leoni et al. Phys. Rep. 268 (1996)

Fluctuation Analysis applied to decay-out spectra

C.S.N.S.M Orsay - VAX_Cluster central
Note: Submitted command = DO LASER /O SAPHELP.TXT;1
CSNVAX::LEONI
JOB 487
SAPHELP.TXT;1
STATE
/ TIFIT/
SAP

Preliminary analyses on EUROGAM1 data at CSNSM: 192 Hg: <N_t> ~5000 194 Pb:<N_t>~1500

Fluctuation Analysis applied to decay-out spectra

Preliminary analyses on EUROGAM1 data at CSNSM: 192 Hg: <N_t> ~5000 194 Pb:<N_t>~1500

F. Hannachi, S. Leoni, N. Redon, A. Korichi, A. Bracco, A. Wilson A. Lopez-Martens, C. Schuck, I. Deloncle

• large fragmentation ~ 10⁴ decay paths

• large fragmentation ~ 10⁴ decay paths

• 1-2 initial states ⇒ weak coupling to neighbouring ND states

T. Døssing et al. Phys. Rev. Lett. 75 1276 (1995)

T. Døssing et al. Phys. Rev. Lett. 75 1276 (1995)

Why are ¹⁹²Hg and ¹⁹⁴Hg so different ? 7894, 18⁺ T.L. Khoo et al. Phys. Rev. Lett. 76 1583 (1996) 7517, 16 7179, 14 - 6883, 12⁺ - 6629, 10⁺ -6419,8⁺ 10000 3394.0, 13 1000 -3172.9,12 Counts / 4 keV 2687.8, 11 2561.7, 10 2137.9,8 100 6⁺, 1799.3 4⁺, 1064.5 10 2⁺, 427.9 ¹⁹⁴Hg 0^{+} ¹⁹⁴Hg 300 258 214 10000 0.1 Energy (keV) 1000 4000 13 Counts / 4 keV 3262, 14 14 2633, 12 12 100 2217,10 1987,8 6⁺, 1803 ¹⁹²Hg $4^+, 105$ $2^+, 42^-$ 0+- -422 ¹⁹²Hg Energy (keV) 3000 0 1000 4000

Similarity to γ -ray spectra following resonant neutron capture

Similarity to γ-ray spectra following resonant neutron capture

The strength distribution follows a χ^2 distribution with v=1 degree of freedom = Porter-Thomas distribution

Does the primary decay-out strength in ¹⁹⁴Hg follow a Porter Thomas distribution ?

 $v=1_{-1}^{+20}$, $\theta=0.00062_{-0.00044}^{+0.00021}$

A. Lopez-Martens et al. Nucl. Phys. A 647 217 (1999)

Does the primary decay-out strength in ¹⁹⁴Hg follow a Porter Thomas distribution ?

 $v=1_{-1}^{+20}$, $\theta=0.00062$ +0.00021 -0.00044

A. Lopez-Martens et al. Nucl. Phys. A 647 217 (1999)

$$w_{low}/\theta=3.8!$$
 \longleftrightarrow 19 lines observed
out of 600 !

Does the primary decay-out strength in ¹⁹⁴Hg follow a Porter Thomas distribution ?

Conclusion & perspectives

Qualitative & quantitative understanding of the underlying mechanisms involved the population and decay of superdeformed states

Many experimental & data-analysis methods have been developped to study the different aspects related to the population & decay of superdeformed states

Still many open questions & lots to investigate:

- Excitation energy, spin & parity of most superdeformed states?
- Mixing and damping properties as a function of E, I (and K) and A?
- Competition with M1 and M1/E2 decays ?

 \bullet

...

- Enhanced cooling mechanism of SD nuclei in other mass regions ?
- Shape and nature of the decay out spectrum for $A \approx 190$?

 \Rightarrow Clear physics cases for the next generation γ -ray arrays such as AGATA & GRETA

Magnitude of superdeformation first measured

Measurement of lifetimes in the 2nd well of ²³⁹Pu produced in the ²³⁸U(α ,3n) reaction

 \Rightarrow first proof of shape isomerism: Q_o: 36 ± 4 eb \Leftrightarrow c/a ~ 2

Linking transitions in ¹⁵²Dy: implications for SD-ND crossing

~1 MeV lower in E* and ~10 \hbar lower ?

QC decomposition

Simulation & removal of E1 spectrum

Angular distribution of remaining QC

