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Gamma-ray cascades probing
the structure of warm rotating nuclei

The beginning of the quest for rotating nuclei
- overall stability – shape changes
- rare earth nuclei:  long cascades of rotational E2 transitions.

Energy-energy correlations,  damping of rotational motion

Silvias PhD work
– quantitative study of energy-energy correlations,
ridges, valleys and fluctuations

Current understanding:  
- ordered and/or chaotic intrinsic and rotational motion 
- realistic calculations of mixed bands
- characteristic energy –and angular momentum scales
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Overall stability – rotating liquid drop

Cohen, Plasil and Swiatecki,
Annals of Physics 82(1974)557Mass number
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absolute limit

triaxial shapes rotating 
perpendicicular to 
smallest axis

Fission barrier = 8 MeV

Oblate shapes flattened at 
poles 
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Rotating liquid drop – stretching of shapes

Mass number 
around A = 170

I = 0

I = 79

I = 84
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Influence of shell structure 

Cranked mean field – development of shapes

- extensive computer program development
 K. Neergaard et.al., Nuclear Physics A262(1976)61     (Dubna group)

  G. Andersson et.al., Nuclear Physics A268(1976)205     (Lund group)

results in the present connection:
- mid-rare-earth nuclei  around  A       164 to 178:  

   shell energy rather unaffected by rotation – stays at same
   well deformed shape up to highest angular momenta

   light rare-earth nuclei – mass around A       152: transition to oblate,  
   then collective superdeformed 

   (prediction 10 years ahead of discovery of superdeformed bands)
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Looking for rotational gamma-rays 

quote:
……

……



Milano-24-TD

Clever setup to investigate gamma-rays
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Beautiful  result from clever setup 

”bump spectroscopy” – pioneered by F. Stephens and R. M Diamond

Fusion reactions 
with      Ca and     Ar ->
very high angular 
momentum 

For rare earth nuclei:

Long cascades of 
collective transitions 
all the way up

Rigid body moment
of inertia

48 40
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Innovation and imagination 

• Bent Herskind 1931-2021
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Gamma-ray energy-energy correlations

At talk by Bent Herskind:

Amand Fässler comment:
”I appreciate these foils as  a piece 
of art, but what does it tell about 
the physics?”

COR    E    -   E    spectrum: 

positive 

negative

O. Andersen et. al, Phys. Rev. Lett 43 (1979) 687

nucleus:        Se72
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Gamma energy-energy correlations –
        perpendicular cuts
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Expected energy-energy correlations for
                decay along rotational bands

level scheme with bands         E    -  E    correlations           perpendicular cut 
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Why are energy correlations weak?
             Mixing of rotational bands 
         – damping of rotational motion

rotational transitions out
of a mixed state
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B. Lauritzen, T. Døssing and R.A. Broglia, 
Nucl. Phys. A457(1986)61

Mass A = 160 nucleus
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Damping of rotational motion – analytic expressions
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Turning point in understanding

Silvias Thesis -  december 1992 – 225 pages
- Landscapes of E    -     E    correlation spectra
- Fluctuations of E    -    E     correlation spectra 
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Silvias thesis: NORDBALL detector frame
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Silvias thesis: crystals mounted 
                         in NORDBALL

• 30 days heroic experiment at the NORDBALL
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Fluctuation analysis – main idea

pioneered by F. Stephens – developed by S. Leoni et al

events -> channels randomly:

paths -> channels randomly 
events -> paths randomly:

number of paths in actual 
cascades:
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Assumption of random transition energy
             within basic interval  - illustration

Known bands
In Yb ísotopes 
at that time
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Fluctuations of spectra - illustration

Correlation spectrum

(diiscrete transitions subtracted 
on right hand side)

Smooth spectum 

Local second moment –
that is local variance 
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Number of paths - ridge 

assume
random 
energies 
along ridge

620          820          1020        1220 620          820          1020        1220 

E    (kev)
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Number of paths - valley 

Assume local 
Porter-Thomas 
fluctiations 
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Main results:

- develop the fluctuation analysis into a well documented and 
reliable technique

 -  confirm picture of band mixing and damping of rotational motion: 
    discrete bands up to about 700 keV above yrast,
    mixing above

- first values for the rotational damping width

         100 keV rot
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Forward to current understanding

- Results on damping since Silvias thesis:  
   Calculations with mixed bands

- General perspective: temperature goes together with 
considerations of order and chaos

(- fruitful covariance studies)

(- extension to SD bands)

- Unsuccessfull search for HD bands
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Rotational and  intrinsic motion

Rotational  motion
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Onset of mixing:
163 Er – interacting bands

Hagemann et al., Nucl.Phys. A618 (1997) 199

C
A

AEH
BEG/BFH

AFG
LI,LII

B AEG
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Infer: mixed bands higher up in energy

HAB <-> FABef

|V| ~ 10 keV

E-Eyrast = 400 keV

d2 ~ 50 keV

E-Eyrast = 1.5 MeV

T ~ 1/3 MeV

d2  ~ 6 keV

Nbranch ~  5

Same 
magnitude of 
interaction
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Magnitude of interactions

K

experimental, from level crossings 

surface –  interaction
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Calculations of interacting bands

M. Matsuo et al. Nucl. Phys. 

A617(1997)1

Cranking np-nh basis bands

Configuration mixing with
residual interaction

•Cranked Nilsson potential
•Surface delta interaction
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Level spacings
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Experimental level spacings

J.D Garrett et.al.  Phys. Lett. 
B392 (1997) 24
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Mixing   and  Damping

 I = 0: spreading of basis band 

state over energy interval

mean 
filed

mean field +   

residual interaction 

 I = -2: one step in a cascade

 I = -4: two steps in a cascade
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E -  E coincidence spectra

E1 -  E2

one 
band

Rotational 
damping

Many 
bands

E2

E1
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E -  E    schematic 
            two-step  strength funcions
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Flow in cascades

angular momentum
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60 30 

I
1 MeV           

asymptotic 

flow line:

U    I2

comp     U 3/2   ~   E  
3

rot     I U ¼   ~   E  
3/2

rot     I2 U -1  ~   const
above motional narrowing:

Dossing and Vigezzi,
Nucl. Phys A587 (1995)13

below motional narrowing:
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18O+150Nd→163Er+5n              

@ 87,93 MeV

v/c =0.96 %
Imax 40, Umax 4 MeV 

3x109 −− events

I = 30 

<Eg>=900 keV

I = 32 
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Fig. 2

comp  20 keV
rot  150 – 200 keV

P       ~ 10 %

Compare data to cascade calculation with mixed        
bands:     Perpendicular cuts  => comp and rot

S. Leoni et al., PRL93(2004)022501-1 narr 

I = 30-40:
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Fluctuations on ridge and in valley: number of paths  

0

40

80

120

160

N
(2

) p
a
th

Ridge

600 800 1000 1200 1400

E (keV)

101

102

103

104

105

106

107

N
(2

) p
a
th

Valley

600 800 1000 1200 1400

E (keV)

101

102

103

104

105

106

107

SDI

No Int

0

40

80

120

160

No Int

SDI

Rotational 
Damping


ro

t

I+2
I

I-2

Discrete 
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A. Bracco et al., PRL76(1996)4484

about ~ 30 discrete bands 
of the four  ’s up to 

U ~ 800 keV

cranking model level 
density

(U,N,Z)

Fragmented decay of 
weak transitions  in the 
valley

Data

Data
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below motional narrowing:

comp     U 3/2   ~   E  
3

rot     I U ¼   ~   E  
3/2

rot     I2 U -1  ~   const
above motional narrowing:

Compilation of  results

Schematic behavior:

rot

F.S. Stephens et.al.Phys. Rev. C78(2008) 034303
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ridge fluctuations

wide component 
from valley shape

valley fluctuations, 
narrow component

60 30 

I

1 MeV           

probed regions in angular momentum
                     and excitation energy
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Conclusions

At a certain point in development of detector arrays, the notion 
of “complete spectroscopy” was introduced.

Comment at that time by Ben Mottelson: “I do not like this 
idea, it is like pinning down the nucleus, leaving no room for 
future surprises”. 

The fluctuation analysis provides insight into the coupling 
between thermal motion and rotation in rare-earth nuclei. This 
is in a way is as complete as we can get, recognizing the basic 
statistical nature of thermal motion. 

The fluctuation and covariance analysis can be used and 
should be used for many applications: fission fragments, 
transfer reactions, octupole soft nuclei, gamma-soft nuclei, 
nuclei with coexistence of competing shapes …
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Occurence of hyperdeformed shapes
              -  axis ratio about 3:1

Hyperdeformed shape (axis 
ration about 3:1  favored by
 both LDM and shell structure 

Formed
Compound nucleus

Decay by neutrons or alpha 
particles –
HD shell structure may appear

N. Schunck and J. Dudek, 2006
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Mass around A=130 favored by
            rotating liquid drop model
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Search for hyperdeformation: 
   intense normally deformed ridges

Many regular 
rotational bands 
resolved, with 
transítion energy up 
to about 2400 keV

Ridge intensity 
about 4 times 
stronger than  
intensity in 
resolved bands

Analysing data from
 B. Herskind et.al. ,
Physica Scripta T125 (2006) 108
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Search for hyperdeformed ridge – 
      best moment of inertia

Transition energy (keV)

N
 ev

e

About same 
result is found
searching for 
ridges in  
simulated  
completely 
random
spectra
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blank slide 
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Schematic strength functions with ergodic 
bands
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Tilted planes in   − − spectra
=> 122Xe

J (2) ~ 77 2/ MeV

N=3: x+3y-4z = ±δ

N=2: x+2y-3z = ±δ

N=1: x+y-2z = ±δ

(α,2n)
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