Travelling around GDR phenomena and new detectors with

Franco Camera

D. Santonocito - Milano 17-18 oct. 2024

This travel starts at the TANDEM Laboratory of the Niels Bohr Institut in Risø, Denmark

It was beginning of June 1990

NORDBALL

GDR Width evolution at low E*

Ebeam	E *	Α	
63	50	108	
73	51	108	
84	62	108	
100	66	111	
140	99	111	
	Ebeam 63 73 84 100 140	Ebeam E* 63 50 73 51 84 62 100 66 140 99	EbeamE*A6350108735110884621081006611114099111

J.J.Gaardhoje et al PRL56(1986)1783 (LBL) J.J.Gaardhoje et al PRL53 (1984)148 (TANDEM in Risø)

Statistical model calculation using CASCADE code:

- Strength = 100% EWSR
- Γ increasing with E*
- Egdr constant with E*

Study of GDR properties for T > 2 MeV

Reaction: ⁴⁰Ar+⁷⁰Ge @ 10 MeV/A

A. Bracco et al. PRL62(1989)2080 (Grenoble)

Hot nuclei (¹¹⁰Sn) were populated at E* ≈ 230 MeV Gamma-rays were measured in coincidence with Evaporation Residues (using PPAC)

The first evidence for a GDR width saturation at about 13 MeV due to saturation of transferred angular momentum.

Quenching of the GDR in Hot nuclei

First evidence of a GDR quenching was observed by Gaardhoje et al. in 1987 studying the reactions ⁴⁰Ar + ⁷⁰Ge 15A and 24A MeV

Fusion events selected through measurements using PPAC (DE-T) Hot systems populated at $E^* \approx 320$ and $E^* \approx 600$ MeV Large distribution in momentum transfer

J.J. Gaardhoje et al PRL59 (1987)1409

At E* = 320 Gamma spectrum reproduced assuming for the GDR:

- Strenght: 100%
- E_{GDR} = 15.5 MeV
- Width = 15 MeV

TOF WFILINDE (SUN FOR A CONTROL OF CONTROL

Residue

At $E^* \approx 600$ MeV the spectrum was nearly identical to the one at 320 MeV

Possible interpretation in terms of loss of collectivity due to different mechanisms

Initial Publications

Charge [C]	Neutron flux \overline{N}_n [neutrons/ cm ²]	Centroid [Channel]	FWHM [keV]
0	0	6787	2.5
1.2×10^{-2}	0.6×10^{9}	6770	2.6
4.6×10^{-2}	2.0×10^{9}	6765	2.8
6.9×10^{-2}	3.0×10^{9}	6762	3.1
7.6×10^{-2}	3.4×10^{9}	6762	3.4

Measurement to determine how the energy resolution of a large HpGe detector (~70%) is affected by irradiation with fast neutron fluxes

- 1	Nuclear Instruments and Methods in Physics Research A314 (1992) North-Holland	NUCLEAR INSTRUMENTS 544-546 & METHODS IN PHYSICS RESEARCH SectionA
<u>1</u> 1		
	Effects of neutron exposure on the of Ge(Hp) detectors	energy resolution
	F. Camera ^{a,b} , A. Bracco ^{a,b} , S. Leoni ^{a,b} , G. Le ^a Dipartimento di Fisica, Universitá di Milano via Celoria 16, 20133 ^b INFN Seci-ne di Milano, Italy	b Bianco ^{a,b} , B. Million ^b and E. Rebesco ^a Milano, Italy
	Received 29 August 1991	
	The energy resolution of a high purity Ge detector with an effintegrated fluxes of fast neutrons. The latter were produced by th 6 MeV. The energy resolution was found to be increased by $\sim 30^\circ$	ficiency of 70% was measured after it was exposed to increasing treaction $p + {}^{mi}C_n \rightarrow Zn + n$ at an incident laboratory energy of after irradiation by an integrated flux of $3 \times 10^{\circ}$ neutrons/cm ² .
т	1. Introduction	tors. It is therefore very important to know how they are damaged by fast neutron bombardment.
Ŧı	Ge detectors are used in γ spectroscopy because of their extremely good energy resolution (~2.0 keV at 1 MeV). One of the major uses is the in-beam measure- ment of gamma rays produced by compound fusion reactions between heavy ions. In addition to gamma rays these reactions produce several neutrons (one for every ~10 MeV of excitation energy) which can be absorbed in the Ge crystal. The structural damage	In the present paper we report on a measuremen- made to determine how the energy resolution of 1 large HpGe detector (~70%) is affected by irradiation with fast neutron fluxes. The detector is manufactures by the company linterchenhulue of Strabourg. The shape of the crystal is that of a cylinder with a diame ter of ~8 cm and a length of ~7 cm. The first 3 cm are tapered to an angle of 10°. The crystal was espe- cially designed to keep the detector to a temperature
	Lensed by neurons consists of the creation or trapping levels between the valence and conduction 'analysis, As a consequence, the electron-hole pairs, created by the photon interaction in the active volume of the detector, are trapped during their drifting to the electrodes. This effect results in the broadening of the full energy peak and in the appearance of a low energy tail. It is therefore important to measure the value of the inter-	lower than 85 K. In fact, the energy resolution of the HpGe detectors that have been irradiated seems to b [1] extremely dependent on the operating temperature An increase of only a few deperes over 85 K causes dramatic increase in the radiation damage sensitivity of the detector.
Ţ	grated neutron flux that such detectors can stand be- fore their energy resolution becomes unacceptable. So far the Ge detectors which where used in nu-	2. The measurement
1- 1 1	clear spectroscopy studies through heavy ion fusion reactions hal an efficiency of 20 to 40%. For detectors of this size the neutron damage of the crystal becomes important after approximately 10° neutrons, crm². In spite of large fluctuations among these detectors on can asy that the FWHM becomes in average larger by a factor of the order of 1.3. Only recently very efficient HpGe detectors (of the order of 70% - 80%) became available and several groups are constructing arrays with this type of detec-	The energy resolution of the HpGe detector we measured before it was exposed to neutrons using **Co source. The signal from the preamplifyer was set to a Tennetee TC244 Spectroscopy Annplifer with pil up rejection and the chosen shaping time was 4 µ Before the test started a reference spectrum was taked With a counting rate of 1 kHz the FWHM of the 133 keV line of **Co was 2.5 keV. The detector was the irradiated with neutrons produced by the reaction p + ***Cu - 2.6 + n with an incident proton energy of
- 4	0168-9002/92/\$05.00 © 1992 - Elsevier Science Publishers B.V	All rights reserved

Angular anisotropy $a2(E\gamma)$ for ¹¹⁰Sn at E* = 92 MeV and I~ 60h

My Activities @ LNS – Catania

Intermediate energy heavy ion collisions Studies using MEDEA setup in GANIL and LNS

Characterization of the pre-equilibrium emission:

- High energy protons
- High energy gamma-rays

GDR quenching ³⁶Ar + ⁹⁰Zr @ 27 MeV/A

The γ-ray multiplicity saturation was consistent with a disappearance of the GDR strenght above E* = 250 MeV

My real start in the GDR business (2002-2003)

Build SOLE + Maciste setup to complement MEDEA

Hot GDR properties scenario up to 2006

Most of the activities were focused on the GDR Width evolution with Temperature and Spin GDR Width evolution: J-dependence

A. Bracco et al PRL74 (1995) 3748

Different J intervals selected through low γ -ray

Nucleus	Т	$\langle T \rangle$	$\langle I \rangle$	$E_{\rm GDR}$	Γ_{GDR}	FWHM ₁
¹⁰⁹ Sn (a)	1.79	1.6	40	15.7	10.8	18
110 Sn (b)	1.96	1.8	44	15.0	11.7	16
¹⁰⁹ Sn (c)	1.57	1.4	49	15.6	11.4	16
110 Sn (d)	1.74	1.6	54	14.7	12.8	14

Previous work was extended populating ¹⁰⁶Sn nuclei at E* = 8 MeV and lower J using ⁵⁸Ni+⁴⁸Ti @ 260 MeV

The width of the GDR is roughly constant for J < 35h, increasing rapidly for higher angular momenta. Good agreement with theoretical calculations within TSFM

GDR Width evolution: J-dependence

Measurement in different mass regions.

Width increase depends on the system A \rightarrow J value at which the increase takes place goes up with A.

Deformation is driven by rotational frequency

Basic assumptions of TSFM work in describing the data trend:

Dipole vibration coupled to the ensamble of nuclear deformations characterising the nucleus at finite T and J.

Width increase with J reflects the increase in the splitting of GDR components associated to increase in deformation induced by rotation.

GDR Width evolution: T-dependence

GDR width in ¹⁷⁹Au at very low T

⁹⁰Zr + ⁸⁹Y → ¹⁷⁹Au @ E* = 20 MeV

⁹⁰Zr beam @ 352 MeV

Probe nuclear shapes in the region of temperature T = 0.5 - 1 MeV to investigate how shell effects decrease with increasing temperature.

Study of GDR properties for T > 2 MeV

GDR width in 132 Ce hot nuclei up to T= 4 MeV

Investigation of the problem required new data:

• a good control on the pre-equilibrium emission

Symmetric reactions used to populate hot nuclei of 132 Ce at E* = 100, 150 and 200 MeV

Pre-equilibrium corrections applied to GDR width in the A ~ 120 systematics at high T.

Wieland et al. Phys. Rev. Lett. 97(2006)012501 In mass region A ~ 130 the GDR Width increases with T

The trend can be reproduced including **compound nucleus lifetime** within the TFM calculation

GDR quenching

Physics Letters B 782 (2018) 427-432

Physics Letters B

Mapping the demise of collective motion in nuclei at high excitation

D. Santonocito^{a,*}, Y. Blumenfeld^b, C. Maiolino^a, C. Agodi^a, R. Alba^a, G. Bellia^{a,e}, R. Coniglione^a, A. Del Zoppo^a, F. Hongmei^a, E. Migneco^{a,e}, P. Piattelli^a, P. Sapienza^a

energy

Evolution of the GDR properties up to E* = 330 MeV with MEDEA

Reactions studied:

¹¹⁶Sn + ¹²C, ²⁴Mg @ 17 MeV/A ¹¹⁶Sn + ¹²C, ²⁴Mg @ 23 MeV/A

Detectors

CLYC

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

	RECEIVED: September 4, 2018 ACCEPTED: October 15, 2018 PUBLISHED: November 13, 2018
Fast neutron detection efficiency of ⁶	Li and ⁷ Li enriched
CLYC scintillators using an Am-Be so	ource
N. Blasi, ^a S. Brambilla, ^b F. Camera, ^{a,b,1} S. Ceruti, ^{a,b} A. Gia S. Manenti, ^b A. Mentana, ^{a,b} B. Million ^b and S. Riboldi ^{a,b}	$\mathbf{z},^{a,b,2}$ L. Gini, ^b F. Groppi, ^{a,b}
^a University of Milano, Department of Physics,	
via Cetoria 10, 20133 Milano, fiaty ^b Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano,	
Via Celoria 16, 20133 Milano, Italy	
Via Celoria 16, 20133 Milano, Italy E-mail: franco.camera@mi.infn.it	

were emircled with more than 99% of 1-11(C/ETC) and with about 95% of 1-11(C/ETC), respectively. Both crystals can detect fast neutrons, whereas only CG/EVC can also detect thermal neutrons, due to the presence of ⁶Li. The measurement was performed at the L.A.S.A. Laboratory of INFN and University of Milano (Italy). To identify the neutron events, the Pulse-Shape-Discrimination technique was used. The values of 1.41 ± 0.16 for CG/LY can 1.16 ± 0.21 for CTLYC for the detection efficiency of the ²⁴¹Am-Be emitted neutrons, with energy up to 10 MeV, were deduced.

KEYWORDS: Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutron detectors (cold, thermal, fast neutrons)

ArXiv ePrint: 1807.10759

inst

¹Corresponding author. ²Present address: University of Padova, Department of Physics, via Marzolo 8, Padova, Italy. \vdash

LaBr3 characterization at the LNS

Many test of LaBr3 crystals were performed at the LNS using sources: AmBe, PuC, AmBe+Ni

- 2 crystal 3"×3" LaBr3 and 2 PMT Photonis XP5300B
- 3 voltage divider/preamp configurations (for schematic see appendix):
 - Saint Gobain standard
 - \circ 4-stages reduced Custom preamp (Custom 4-st (Solve))
 - $\circ \quad \ \ 4 \ \ {\rm stages \ reduced \ Cremat \ preamp} \ ({\rm Cremat \ 4-st})$
- 4 radioactive sources covering the energy range from 0.5 MeV to 9 MeV:
 - o 137Cs (0.662 MeV)
 - \circ ⁶⁰Co (1.172 MeV and 1.332 MeV)
 - PuC (6.13 MeV)
 - $\circ~$ AmBe (4.437 MeV) used as well with paraffin/Ni for neutron capture reaction Ni(n, $\!\gamma)$ 8.997 MeV

Proposal for beam time at LNS TANDEM accelerator

Optimisation and calibration of Lanthanum Halides Scintillation spectrometers for Space Missions: BepiColombo and Phobos-Grunt and for in beam γ spectroscopy

Participants:

European Space Agency/ ESTEC Dipartimento di Fisica, Universita di Milano INFN Sez. Milano INFN-LNS Catania

CSN 3

Maya Archeology

sacrificial victim on altar

Celebrating events using Maya Writing system

- Date
- Name
- Sentence

17 october 2024

13.0.11.17.18 6 Etz'nab' 1 Sak'

13 baktun 13 X 144,000 days = 1,872,000 days

0 katun 0 X 7,200 days = 0 days

11 tun 11 X 360 days = 3,960 days

17 uinal 17 X 20 days = 340 days

18 k'in 18 X 1 day = 18 days

HAPPY BIRTHDAY !!