

POLITECNICO MILANO 1863

Readout of large scintillators by SiPMs and high-dynamic-range ASICs

Carlo Fiorini

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Milano, Italy Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Milano, Milano, Italy

UniMI/INFN-MI Workshop – 17/10/2024

Impact Ionization in a *pn* diode

- **High electric field** (>5x10⁵ V/cm) in the depletion region
- Charge carrier can be accelerated to create secondary charge pairs through impact ionization.

Two different working regimes, depending on the applied voltage to the reverse biased diode:

- APD (Avalanche photodiode): the output current is proportional to the input signal
- SPAD (Single Photon APD) or GM-APD (Geiger Mode APD): the output current is independent from the input signal

SPAD operation

The SPAD is biased above the breakdown voltage (V_{BD}). In such conditions, the electric field is so high that a single carrier generated into the depletion layer (by an incoming photon or by thermal generation) can trigger a self-sustaining avalanche process and a rapid increase of the current to a macroscopic level.

The current theoretically would continue to flow <u>until the avalanche is quenched by lowering the bias</u> <u>voltage</u> to or below the breakdown voltage, by a so called "quenching circuit". The bias voltage (V_{bias}) must then be restored in order to be able to detect another photon (reset phase).

The Silicon Photomultiplier (SiPM) principle

- Many SPAD cells in parallel with quench resistors
- The total signal is proportional to the number of fired cells, i.e. to the number of detected photons
- Measuring the 'analog' information of I_{TOT} allows to retrieve the number of photons absorbed
- Multiple photons interacting on the same cell are counted as a single hit

Example of single photon detection capability

SiPMs (several producers: Hamamatsu, ON-Semi, FBK, ...)

These devices are called in different ways:

- > SiPM: Silicon Photo Multipliers
- > MPPC: Multi-Photon Pixel Counter
- Si-SSPMT: Silicon Solid State PMT

Typical SPAD cell size from 15 μm \times 15 μm up to 100 μm \times 100 μm

More and more alternative of Photo-Multiplier Tubes (SiPMs are more compact and MR compatible)

RadLab INFN

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

SiPM arrays

- Arrays of SiPM for Imaging applications
- Compact alignment of SiPMs
- Reduced dead area
- Common bias strategies
- Tilable on 4 sides (Possibility to create larger matrices by combining single units)
- TSV (Through Silicon Via) technology

		16	-	1	-		
2			191				
	-		-		128	1	
	2	2	205	10	100		10
0	-		100	1980	100	8	0

8 x 8 matrix – Hamamatsu

6 x 6 matrix - FBK

12 x 12 matrix – ON Semiconductor

SiPMs in gamma-ray detection

Fig. 2. Picture showing the comparison of PET detectors based on PMTs (left) and on SiPMs (right) in their implementation by Siemens Healthineers (picture from [34]).

* Pixellated ** Monolithic

Carlo Fiorini - UniMI/INFN-MI Workshop - 17/10/2024

Main limitations of SiPMs

1) Dynamic Range

- Primary source: Dark count
- Secondary sources: After pulse, Cross talk

3) Small pixels \rightarrow to cover large areas, need for a readout ASIC

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

Automatic Gain Control (AGC) ASIC to cover a high dynamic range $(1ph \rightarrow 10.000ph)$ in γ -spectroscopy

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

Gain-switching: standard approach

Gain-switching: 'predictive' approach

Features:

- Only one gain transition among multiple gains
- Relative freedom in setting the threshold
- Gain-switch decision taken quite early vs. end of integration
- Gain modulation allows for 84dB Dynamic Range on each channel!

The GAMMA detector - General architecture

FBK NUV-HD SiPM custom tile

- 6 x 6 mm² SiPMs
- 9 tiles, 1" x 1" size each, 4-side buttable
- Custom high-reliability connectors
- Temperature sensor under each tile

Two microcell options: 30µm and 15µm cells

30µm cells:

- 45% PDE
- 77% FF
- V_{BD} = 26.5V
- 40kHz/mm² DCR
- 1% non-linearity due to cell saturation at 9 MeV, 4% at 15.1 MeV
- 30 MeV FSR

15µm cells:

- 40% PDE
- 61% FF
- V_{BD} = 31.5V
- 60kHz/mm² DCR
- 1% non-linearity due to cell saturation at 35 MeV

1"

• > 50 MeV FSR

3" 144 SiPM Matrix

16 SiPM per tile

Machine learning for position reconstruction

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

Measurements setup

Beamline experiments performed at IFIN-HH Tandem accelerator (Măgurele, Romania)

Reaction: ${}^{11}B + D \rightarrow {}^{12}C + \gamma + n$

SiPM+LaBr₃ energy resolution: fixed gain vs AGC

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

INFN

SiPM illumination at 15.1MeV with collimation

SiPMs signal patterns for different collimations

Uncollimated spectrum corrected for Doppler broadening

The uncollimated spectrum has been moved upward and recalibrated to be superposed with the corrected one

Application in BNCT (Boron Neutron Capture Therapy)

20

Detection of emitted 478keV **Goal**: Development of a Epithermal neutrons gamma photons may let to **SPECT** (Single Photon **○**+ estimate ¹⁰B neutron captures E.a = 1.47 MeV **Emission Thomography**) <u>-</u> and support therapeutic outcome ● system) for BNCT (personalized dosimetry). \bigcirc γ = 0.48 MeV (94 %) $t \sim 10^{-12}$ E_{Li} = 0.84 MeV **Neutron beam** Collimator **Prompt gamma** Air Tissue rays at 478 keV Detector Incident Scintillator Electronics gamma-rav crystal BB (ASICs+FPGA) HIDDEN (H_1) (H_2) (H_3) Tumour OUTPUT SiPM matrix loaded SiPMs matrix with ¹⁰B LaBr₃(Ce+Sr Neural-Network for Scintillator/SiPMs-based gamma-ray detector event reconstruction BeNEdiCTE (Boron NEutron CapTurE) detector

RadLab IN

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

Experiments at nuclear reactor in Pavia (and BNCT facilities)

Carlo Fiorini – UniMI/INFN-MI Workshop – 17/10/2024

POLITECNICO

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Thanks to Franco and Silvia for their constant support to this activity!

Thanks to all of you for your attention!

carlo.fiorini@polimi.it