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• Born and raised in Piedmont 

• Graduated in Turin 

• Went into teaching for a while

Something about me
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My main interests in physics: gravity, general relativity, black holes

Other interests include…

Baking and cooking Politics around the world Magic: the Gathering



• Einstein, 1915: new formulation of classical 
physics where gravity = curvature 

• Main object: spacetime metric,  

• Bound by the Einstein Field Equations 
to mass-energy 

• 2nd order PDEs with gauge freedom, 
very hard to solve 

• Particles and waves move along geodesics

gμν
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General Relativity

“Matter tells spacetime how to curve, and 
curvature tells matter how to move”

Rμν −
1
2

gμνR =
8πG
c4

Tμν

Ricci tensor: curvature 
of spacetime

Stress-energy tensor: 
matter/energy content

d2xλ

dt2
+ Γλ

μν
dxμ

dt
dxν

dt
= 0

Christoffel symbols



• Exact solutions are few and far between (black holes, simple cosmological models) 

• Post-Newtonian (PN) theory: perturbative solution for low velocity and weak field: 
 
 

• Black hole perturbation theory (BHPT)/Gravitational self-force: small body orbiting a large 
black hole 
 

• Numerical relativity (NR): evolution of initial “snapshot” of spacetime 

• Many theoretical and technical challenges, very expensive simulations

Approaches to GR

v2

c2
∼

GM
c2r

≪ 1 “nPN order” = O(c−2n)
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μ
M

≪ 1



• Karl Schwarzschild, 1916: spherically symmetric vacuum solution with a central singularity 
 
 
 

• Roy Kerr, 1963: axially symmetric vacuum solution for rotating BH with spin  

• Geodesics have Newtonian motion as weak-field limit 

• Event horizon:  (Schwarzschild) 

• Future light-cones of observers below the horizon 
are warped towards the center; all paths lead there 

• Matter inside the event horizon cannot affect the outside

S

rH =
2GM

c2

Black holes
ds2 = − (1 −

2GM
c2r )

A(r)

c2dt2 + (1 −
2GM
c2r )

−1

B(r)

dr2 + r2 (dθ2 + sin2 θdφ2)
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HSchw = A(r)(μ2c2 +
p2

φ

r2
+

1
B(r)

p2
r )

Geodesic Hamiltonian



• Karl Schwarzschild, 1916: spherically symmetric vacuum solution with a central singularity 
 
 
 

• Roy Kerr, 1963: axially symmetric vacuum solution for rotating BH with spin  
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• Event horizon:  (Schwarzschild)

S

rH =
2GM

c2

Black holes
ds2 = − (1 −

2GM
c2r )

A(r)
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2GM
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−1

B(r)
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HSchw = A(r)(μ2c2 +
p2

φ

r2
+

1
B(r)

p2
r )

Geodesic Hamiltonian

“No hair” Theorem 

A black hole is completely 
characterized by three parameters: 

Mass 
Angular momentum 

(Electric charge)



• Linearized theory:  

• GWs: perturbations of background spacetime propagating 
           at speed of light 

• Carrying energy, momentum 

• Transverse 

• Two polarizations ( ) 
 
 

• Source?

gμν ≃ ημν + hμν, |h | ≪ 1

h+, h×

Gravitational Waves
□ hμν = −

16πG
c4

Tμν Wave equation!
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• Solve linearized equation by retarded Green’s function: 

• To lowest order: quadrupole formula 

• Usually given as multipole expansion 

• Only the strongest sources in the universe are detectable: 
• Compact Object Binaries (BHS, Neutron Stars) 
• Supernovae (possibly)

Sources of GWs
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hμν(t, x) =
4G
c3 ∫ d3x′￼

1
|x − x′￼|

Tμν (t −
|x − x′￼|

c
, x′￼)

hTT
ij (t, x) =

1
r

2G
c4

··Qij (t −
r
c )

h+ − ih× = ∑
ℓ≥2

ℓ

∑
m=−ℓ

hℓm −2Yℓm(θ, φ)

·E =
1

16πG ∑
ℓ≥2

ℓ

∑
m=−ℓ

·hℓm
2

·J =
1

16πG ∑
ℓ≥2

ℓ

∑
m=−ℓ

im ·hℓmh*ℓm

Energy and angular momentum 
fluxesLeading (2,2) mode



• Quadrupole formula for binary system: 

• GW frequency:  

• Phases: 

• Inspiral: loss of energy brings BHs closer 
Velocity and frequency rise 

• Plunge: BHs quickly collapse onto one another 

• Merger: a single body forms 

• Ringdown: relaxation to final state (Kerr BH)

ω22 = 2Ω

Black hole binaries
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− ·EGW = ·Esystem = −
32c5

5G
μ2

M2
Ω10/3

PN
NR

BHPT



• LIGO, Virgo, KAGRA: interferometric detectors 
 
 
 
 
 
 
 
 
 

• Technique: matched filtering to extract signal from noise 

• Accurate models essential for detection and parameter 
estimation

Detecting GWs
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Strain = h ∼
δL
L

∼ 10−21!!!



• Key word: resummation 

• PN series (dynamics, waveform) don’t work in strong field

Effective-One-Body
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ν =
μ
M

=
m1m2

(m1 + m2)2

!!G = c = 1!!

HEOB = M 1 + 2ν ( Heff

μ
− 1)

Heff = A(r)(μ2 +
p2

φ

r2
+

1
B(r)

p2
r + νz3

p4
r

r2 )
A5PN(r) =

Schwarzschild!

1 −
2M
r

+2ν ( M
r )

3

+ ( 94
3

−
41
32

π2) ν ( M
r )

4

+ν (a5 + alog
5 log

M
r ) ( M

r )
5

+ ν (a6 + alog
6 log

M
r ) ( M

r )
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 resummed as a (3, 3) Padé:A5PN(r)

A(r) ≡ P3
3[A5PN(r)] =

1 + ã1u + ã2u2 + ã3u3

1 + ã4u + ã5u2 + ã6u3
u ≡

M
r

Two-body problem 
mapped into motion 

of effective particle in 
effective metric

HADM = −
Gm1m2

R12
+

P2
1

2m1
+

P2
2

2m2
+ …

Non-geodesic 
term (3PN+)

Continuous deformation 
of Schwarzschild

+1 ↔ 2 + O ( 1
c7 )



• Conservative dynamics (Hamiltonian) completed by radiation reaction force and waveform

Effective-One-Body
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dr
dt

=
∂HEOB

∂pr

dφ
dt

=
∂HEOB

∂pφ

dpr

dt
= −

∂HEOB

∂r
+ℱr

dpφ

dt
= ℱφ

Balance argument:
·E∞
GW + ·EH

GW = − ·HEOB − ·ESchott
·J∞
GW + ·JH

GW = − ·pφ − ·JSchott

Flux at infinity 
+ 

Flux at horizon
=

Loss by system 
+ 

Schott term

ℱr, ℱφ

Waveform model

h22 =
16Mνx

RL

π
5

H22e−2iφ

(2,2) mode at 3.5PN

x = (MΩ)2/3

Factorize Resum

Newtonian 
(leading) 

term

Effective 
source 

(energy/ 
ang. mom.)

Hereditary 
contributions

Residual 
amplitude 
correction

ℱφ = −
32
5

ν2r4
ωΩ5 ∑

ℓ,m

FN
ℓm

FN
22

| ĥℓm |2 + ℱH
φ

Padé- 
resummed!



Effective-One-Body

Validation:  

• Comparison with NR (comparable-mass case) 

• BHPT in test-mass case ( )ν → 0

spinning BHsm1 = m2,
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NR also used for calibration 
Especially for plunge and post-merger



• Peters-Mathews (1964): 
Evolution of orbital period and eccentricity under 
radiation reaction 
 
 
 
 
 
 
 

• Most systems expected to circularize by the time 
they’re detectable by LIGO-VIRGO-KAGRA 

• Models long specialized to simpler circular binaries, 
where  

• With eccentricity: multiple timescales (orbital, 
precession, rad. reaction) 
Frequency/amplitude modulations

t ↔ r ↔ Ω

Eccentricity
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0.4 ·e < 0!

Eccentricity-induced orbit precession: 
even conservative orbits have incommensurable 

radial/angular periods

Test of GR: 
decay of orbit of 

Hulse-Taylor 
binary pulsar



• Simple prescription for eccentric corrections: 
 
 
 
 
 
 
 
 
 
 
 

• Future:

TEOBResumS-Dalí
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Newtonian-level correcting factors 
Only for dominant (2,2) mode in ℱφ

ℱφ = −
32
5

ν2r4
ωΩ5 ∑

ℓ,m

FN
ℓm

FN
22

| ĥℓm |2 ̂f N,non−circ.
ℓm +ℱH

φ

hℓm = h(N,ϵ)
ℓm ĥN,non−circ.

ℓm ĥℓm

̂f N,non−circ.
22 = 1 +

3
4

··r2

r2Ω4
−

··Ω
4Ω3

+
3 ·r ·Ω
rΩ3

+
4 ·r2

r2Ω2
+

··Ω ·r2

8r2Ω5
+

3
4

·r3 ·Ω
r3Ω5

+
3
4

·r4

r4Ω4
+

3
4

·Ω2

Ω4
− ···r (

·r
2r2Ω4

+
·Ω

8rΩ5 ) + ··r (−
2

rΩ2
+

··Ω
8rΩ5

+
3
8

·r ·Ω
r2Ω5 )

Key step: no use of PN-expanded equations of motion in place of time derivatives

Include strong-field information through resummed conservative dynamics even by using just leading correction

State-of-the-art black hole 
binary model 
Made in Turin

Include higher order 
corrections

“Post-Adiabatic” eccentric 
evolution for speed

Review of spin-orbit effects 
for better agreement with high spins



TEOBResumS-Dalí NR validation

BHPT as a laboratory 
to test new ideas
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• The orbital plane shifts when the BH spins and the 
orbital angular momentum are misaligned 

• Amplitude and frequency modulations in signal 

• Can be degenerate with eccentricity! 

• Twist method: 

• Gamba, D. C., Neogi (2024): use of PN equations for  
                                                               coupled with EOB  ~enough 
                                                               for moderately eccentric, precessing binaries 

• Future: 

⃗S , ⃗L
Ω

Eccentricity and spin precession
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Evolve planar 
system

Evolve spins,  
separately

⃗L Rotate wave 
modes accordingly

Need more testing against NR
Inclusion of in-plane spins 

in dynamics



• Black holes in a binary absorb energy and angular momentum through their horizons 

• Masses, spins change during evolution 

• Horizon fluxes contribute to radiation reaction

Tidal heating
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“Tidal heating”, “tidal torquing” 
Similar to, e.g., satellites

Observed in NR!

·m = Ω ·S =
16
5

m6m2
2

r6 (1 + 1 − χ2) (1 + 3χ2) (Ω − ΩH) Ω

Tiny effect Superradiance: 
If , energy and momentum 

are extracted from BH
Ω < ΩH

χ =
S

m2
=

a
m

≤ 1

Mass-rescaled spin

ΩH =
χ

2mrH

Horizon rotational frequency

Leading order for circular orbits currently in TEOBResumS-Dalí 
Though known up to 1.5PN ( )O(c−3)

Jaraba, Bellido (2021) 

Spin-up of BHs 
after close scattering 

in NR simulations



• D.C., Gamba (2024): 1.5PN expressions for tidal heating, torquing valid on generic orbits 
 
 
 
 
 
 
 
 
 

• Future: 

Tidal heating
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• Factorization with  similar to circular case 

• Mass/energy and angular momentum flux decoupled ( ) 

• Raw PN leads to strange phenomenology on scattering dynamics 

• Order of magnitude of NR data reproduced though

ΩH

·m ≠ Ω ·S

EOB/PN vs NR spin-up

More NR comparisons
Compute horizon flux in 

BHPT and compare

Explore resummation 
for use in dynamics

Circular limit

Generic orbits



THE END


