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Quantum computers

Quantum computer

=

system of highly 

controllable qubits
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Quantum computers

133 qubits

Dots are qubits

Color indicates quality

Can apply unitary maps 

to connected qubits
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Finite density

Currently can’t do 

non-zero density

Sign problem: the 

action 𝑆 is complex-

valued.

𝑍 = ∫ 𝐷𝐴 𝑒−𝑆



Real time dynamics

Prepare proton state

| ۧ𝜓

Time-evolve:

𝑒−𝑖𝐻𝑄𝐶𝐷𝑡| ۧ𝜓

Measure various properties
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Classical representation for 𝑁 qubits

requires 2𝑁 complex numbers. 
Unfeasible for large 𝑁

Bosonic QFTs have infinite-dimensional

Hilbert space

Need a method to 

truncate Hilbert space

(lots of literature)

Naïve estimate for QCD (my own):

𝑁 ≈ 50 ∙ 106
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General structure of quantum computation

Prepare initial state ۧ|𝜓0

Perform arbitrary

unitary operations 

ۧ𝑈|𝜓0

Measure the final state

𝑒−𝑖𝐻𝑄𝐶𝐷𝑡

Measure relevant observables
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Toy model: 1+1 dimensional Abelian gauge theory From Papaefstathiou et al (2024)

Simulation of particle collision 

using a classical heuristic

(tensor network)

Initial state:

Final state:

Inelastic collision
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Error mitigation example: zero noise extrapolation

From Qiskit Github

Idea:

1) increase noise artificially

2) extrapolate to “no noise”

(not necessarily linear)



Conclusions

In the long term, quantum 

computers will be useful for 

particle physics calculations

Many practical and theoretical

challenges on the way
Currently, they are limited

by noise and memory


