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Parameter Estimation

Initial Grid

Integrate Likelihood Extrinsic (ILE)

● Compute Marginalized likelihood {λ⍺,L
marg,⍺}

Construct Intrinsic Posterior (CIP)

● Fit marginalized likelihood
● Construct posterior
● Fairdraw samples

Converged or Repeat

Credit: Katelyn Wagner
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Binary Black Holes

● 7 intrinsic parameters:  mass ratio and x, y, z 

dimensions of each object (total mass is scalable in 

NR) for the quasi-circular case
○ Define non-precessing systems such that only 

z-components are nonzero (do not evolve with time)

● +2 more parameters (e and mean anomaly) when 

eccentricity is allowed to be nonzero

● Numerical Relativity codes is the only method to 

produce for the full inspiral, merger, and ringdown 

waveform using all these parameters
○ Recently novel precessing, eccentric waveform 

SEOBNRE: https://arxiv.org/pdf/2310.04552.pdf

Credit: Deborah Ferguson
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Current NR Catalogs

● Up to mass ratios q ~ 15
○ Selected simulations at high mass ratios 128:1 

[3], and more recently 1024:1 [17]

● Dense coverage up to q ~ 4

● Modest coverage of eccentric waveforms

● Minimal highly spinning/precessing simulations 

(and most are near q=1)

Credit: Deborah Ferguson

BAM
SXS
RIT
MAYA
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The why and how of filling the parameter space?

● If the there is a dense enough NR grid, can use NR waveforms directly with PE

● Accurately training models to sufficient accuracy for current and next-generation detectors

● NR simulations are computationally expensive

● Eccentric space is extremely sparse (even more sparse with precession)

● Need to be strategic in new NR placement:

○ Machine learning [11]

○ NR-based PE influenced placement (coming up)
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NR-Based PE

● NR-based PE for GW150914 in green including and 

excluding HOMs (dashed/solid respectively)

● Colored points represent each simulation’s max lnL when 

compared to the data over a total mass range

● Black & gray points having the highest lnL

● Interpolate between the points to construct the 

continuous lnL 

Figure 4 from [8] 13



Context

● Main goal of numerical relativity (NR) groups is 
to fully cover relevant parameter space with 
NR simulations. Can do this by:

○ Focusing on parts of parameter space where 
there are few simulations

○ Focusing on parts of parameter space that are 
important for existing events

● There exist previous work attempting to do 
both [1-4, 9]

● Would be useful to have a data-driven method 
to take into account the the relevant part of 
parameter space as well as the parse-ness of 
the current NR grid
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Method (RIFT)

● Parameter estimation (PE) for gravitational wave (GW) sources: Compare models and data, using gaussian 

statistics

● NR-based PE idea using RIFT: originally introduced in [7]
○ Integrate over extrinsic parameter space over a 1D grid in total mass for fixed NR intrinsic parameters

● Reconstruct continuous marginalized likelihood from the discrete
○ Gaussian Process Regression (GP) - returns fit as well as error of the fit

○ Choosing a free weight factor for the error, we add the error from the GP to the fit

● Construct “Error influenced” posterior via Bayes

Figure 7 from [8] 15



Test Case: GW190521

● From [6], plot shows 4 analyses of GW190521 

using SEOBNRv4PHM (green), 

IMRPhenomPv3HM (orange), NRSur7dq4 

(blue), and directly comparing to NR (black)

● While all the results are largely consistent, 

there are noticeable differences between the 

analyses

● The NR-based PE peaks at a noticeable lower 

chi_p than the other analyses; could be do due 

only have a few highly precessing/spinning NR

Figure 8 from [6] 16



The New Follow up Simulations

Credit: 
Deborah 
Ferguson

Mismatch: 
0.0013

Preliminary
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Why do we care? Formation Channels
Isolated formation Dynamical formation
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Why do we care? Formation Channels

● It is expected that eccentricity is radiated away early in an binary orbit (i.e. before aLIGO/aVirgo frequencies)

● If the signal strongly prefers quasi-circular waveforms, we can infer that the source was formed in isolation

● If the signal has any evidence of eccentricity, we can infer that the source was formed from random encounters 

in dense clusters

● While the recent work is focused on LIGO/Virgo frequencies, a case can also be made for expected LISA sources: 

early inspiral of BH mergers, EMRIs, SMBHs
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Eccentric Parameter Estimation with eccentric models
TEOBResumS-DALI SEOBNRE SEOBNRv4EHM

● Three selected PE studies using the 3 different eccentric models
● While using different settings and models, TEOBResumS-DALI and 

SEOBNRv4EHM studies did not find evidence of eccentricity and the 
SEOBNRE study did for a few events
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Precession vs Eccentricity

● While GW models exist that include precession or 

eccentricity, only numerical relativity can produce 

waveforms with both

● It has been theorized that precession and 

eccentricity can mimic each other if a model is 

missing some of the physics

● We want to investigate our ability to measure 

precession and eccentricity and to see how 

significant is the systematics of our current 

waveform models

q=1, a1x=a2x=0.5, e=0.5

q=1, a1x=a2x=0.5, e=0
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Precession vs Eccentricity

● Analysis Using precessing only model of two 

injections:

○ Red=Precessing only NR simulation

○ Blue=Precessing+Eccentric NR simulation

● While PE results are still converging, we 

already see bias in the recovery when the 

model does not include all the physics of the 

injection

Preliminary
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Parameter Estimation of a Hyperbolic Encounter

Injection Parameters:
● M= 80M

sun
● q=2
● p𝝓=5
● E/M=1.01
● 𝟀

eff
=0.0

● DL=500 Mpc
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Hybridization of Extreme Mass Ratio Simulations

● Self-force theory are the leading method to 

produce extreme mass ratio systems

● While SF can produce a long inspiral, it still breaks 

down near merger

● NR can be pushed to larger extreme mass ratio 

systems, but this requires large computing time for 

only a limited duration waveform

● Hybridization is the method of stitch together one 

waveform to another

● Allow us to run relatively limited separation 

simulations to use with hybrids

24Figure 4 from [18]
A Hybridized SF-NR waveform would allow 
for an arbitrary long IMR waveform 



Hybridization of Extreme Mass Ratio Simulations
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Hybridization of Extreme Mass Ratio Simulations
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