# Understanding our ability to infer the properties of binary coalescences via gravitational wave radiation

Jacob Lange with many other collaborators INFN, Sezione di Torino November 2nd 2024, **10:30am** 

### Outline

- Born in Tampa, Florida, USA
- Graduated with B.S. from Florida institute of Technology in Melbourne, Florida in 2014
- Obtained M.S. (2016) and PhD (2020) from Rochester Institute of Technology in Rochester, New York
- Semester-long postdoc at Institute for Computational and Experimental Research in Mathematics, Brown University in Providence, Rhode Island
- Postdoc at University of Texas at Austin in Austin, Texas



Observation





Observation

Waveforms required (for modeled searches)

#### Searches: finding detections





Figure from [15]







### **Parameter Estimation**



RIFT'ing the Waves: Developing and applying an algorithm to infer properties of gravitational wave sources

Jacob Lange Initial Grid

Integrate Likelihood Extrinsic (ILE)

• Compute Marginalized likelihood  $\{\lambda_{\alpha}, L_{marg,\alpha}\}$ 

Construct Intrinsic Posterior (CIP)

- Fit marginalized likelihood
- Construct posterior
- Fairdraw samples

Converged or Repeat



### **Binary Black Holes**



- 7 intrinsic parameters: mass ratio and x, y, z dimensions of each object (total mass is scalable in NR) for the quasi-circular case
  - Define non-precessing systems such that only z-components are nonzero (do not evolve with time)

• +2 more parameters (e and mean anomaly) when eccentricity is allowed to be nonzero

- Numerical Relativity codes is the only method to produce for the full inspiral, merger, and ringdown waveform using all these parameters
  - Recently novel precessing, eccentric waveform SEOBNRE: https://arxiv.org/pdf/2310.04552.pdf

### **Current NR Catalogs**



- Up to mass ratios q ~ 15
  - Selected simulations at high mass ratios 128:1
    [3], and more recently 1024:1 [17]

• Dense coverage up to q ~ 4

Modest coverage of eccentric waveforms

Minimal highly spinning/precessing simulations (and most are near q=1)

### The why and how of filling the parameter space?

- If the there is a dense enough NR grid, can use NR waveforms directly with PE
- Accurately training models to sufficient accuracy for current and next-generation detectors
- NR simulations are computationally expensive
- Eccentric space is extremely sparse (even more sparse with precession)
- Need to be strategic in new NR placement:
  - Machine learning [11]
  - NR-based PE influenced placement (coming up)

### **NR-Based PE**

- NR-based PE for GW150914 in green including and excluding HOMs (dashed/solid respectively)
- Colored points represent each simulation's max InL when compared to the data over a total mass range
- Black & gray points having the highest InL
- Interpolate between the points to construct the continuous InL



### Context

- Main goal of numerical relativity (NR) groups is to fully cover relevant parameter space with NR simulations. Can do this by:
  - Focusing on parts of parameter space where there are few simulations
  - Focusing on parts of parameter space that are important for existing events
- There exist previous work attempting to do both [1-4, 9]
- Would be useful to have a data-driven method to take into account the the relevant part of parameter space as well as the parse-ness of the current NR grid



• Parameter estimation (PE) for gravitational wave (GW) sources: Compare models and data, using gaussian statistics

$$\ln \mathcal{L}(\lambda;\theta) = -\frac{1}{2} \sum_{k} \langle h_k(\lambda,\theta) - d_k | h_k(\lambda,\theta) - d_k \rangle_k - \langle d_k | d_k \rangle_k$$

- NR-based PE idea using RIFT: originally introduced in [7]
  - Integrate over extrinsic parameter space over a 1D grid in total mass for fixed NR intrinsic parameters

$$\mathcal{L}_{\mathrm{marg}}(\lambda) \equiv \int \mathcal{L}(\lambda, \theta) p(\theta) d\theta$$

- Reconstruct continuous marginalized likelihood from the discrete
  - Gaussian Process Regression (GP) returns fit as well as error of the fit
  - Choosing a free weight factor for the error, we add the error from the GP to the fit

• Construct "Error influenced" posterior via Bayes

$$p_{\text{post}}(\lambda) = \frac{\mathcal{L}_{\text{marg}}(\lambda)p(\lambda)}{\int d\lambda \mathcal{L}_{\text{marg}}(\lambda)p(\lambda)}$$



### Test Case: GW190521

 From [6], plot shows 4 analyses of GW190521 using SEOBNRv4PHM (green), IMRPhenomPv3HM (orange), NRSur7dq4 (blue), and directly comparing to NR (black)

• While all the results are largely consistent, there are noticeable differences between the analyses

• The NR-based PE peaks at a noticeable lower chi\_p than the other analyses; could be do due only have a few highly precessing/spinning NR



### The New Follow up Simulations





-10

### Why do we care? Formation Channels



### Why do we care? Formation Channels

- It is expected that eccentricity is radiated away early in an binary orbit (i.e. before aLIGO/aVirgo frequencies)
- If the signal strongly prefers quasi-circular waveforms, we can infer that the source was formed in isolation
- If the signal has any evidence of eccentricity, we can infer that the source was formed from random encounters in dense clusters
- While the recent work is focused on LIGO/Virgo frequencies, a case can also be made for expected LISA sources:
  early inspiral of BH mergers, EMRIs, SMBHs



### **Eccentric Parameter Estimation with eccentric models**

SEOBNRE

Isobel Romero-Shaw, 1,2 Paul D. Lasky, 1,2 and Eric Thrane 1,2

<sup>1</sup>School of Physics and Astronomy, Monash University, Clayton VIC 3800, Australia

<sup>2</sup>OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia

#### **TEOBResumS-DALI**

Eccentricity estimation for five binary black hole mergers with higher-order gravitational wave modes SIGNS OF ECCENTRICITY IN TWO GRAVITATIONAL-WAVE SIGNALS MAY INDICATE A SUB-POPULATION OF H L ICLESINS<sup>1,1</sup> LANCE<sup>1,+</sup> L BAPTOS<sup>2,1</sup> S. BRATNIE<sup>2,2</sup> GAURA<sup>3</sup> V. GAVETIRI<sup>2,4</sup> A JAN<sup>4</sup> B. NOWCEN<sup>1,1</sup> DYNAMICALLY ASSEMBLED BINARY BLACK HOLES

H. L. IGLESIAS,<sup>1</sup> J. LANGE,<sup>1,\*</sup> I. BARTOS,<sup>2,†</sup> S. BHAUMIK,<sup>2</sup> R. GAMBA,<sup>3</sup> V. GAYATHRI,<sup>2,4</sup> A. JAN,<sup>1</sup> R. NOWICKI,<sup>1</sup> R. O'SHAUGHNESSY,<sup>5</sup> D. M. SHOEMAKER,<sup>1</sup> R. VENKATARAMANAN,<sup>1</sup> AND K. WAGNER<sup>5</sup>

<sup>1</sup>Center of Gravitational Physics, University of Teras at Austin, Austin, TX 78718, USA<sup>4</sup>
 <sup>2</sup>Department of Physics, University of Florida, PO Box 118440, Gainseville, FL 32611-8440, USA
 <sup>3</sup>Theoretisch-Physicalisches Institut, Friedrich-Schiller-Universitä it Jena, 07713, Jena, Germany
 <sup>4</sup>Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

<sup>5</sup>Rochester Institute of Technology, Rochester, NY 14623, USA





- Three selected PE studies using the 3 different eccentric models
- While using different settings and models, TEOBResumS-DALI and SEOBNRv4EHM studies did not find evidence of eccentricity and the SEOBNRE study did for a few events

#### SEOBNRv4EHM

#### Bayesian inference of binary black holes with inspiral-merger-ringdown waveforms using two eccentric parameters

Antoni Ramos-Buades,1 Alessandra Buonanno,1.2 and Jonathan Gair

ck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam, 14476, Germany <sup>2</sup>Department of Physics, University of Maryland, College Park, MD 20742, USA (Dated: September 18, 2023)



### **Precession vs Eccentricity**

• While GW models exist that include precession or eccentricity, only numerical relativity can produce waveforms with both

 It has been theorized that precession and eccentricity can mimic each other if a model is missing some of the physics

• We want to investigate our ability to measure precession and eccentricity and to see how significant is the systematics of our current waveform models



#### q=1, a1x=a2x=0.5, e=0.5

### **Precession vs Eccentricity**

- Analysis Using precessing only model of two injections:
  - Red=Precessing only NR simulation
  - Blue=Precessing+Eccentric NR simulation
- While PE results are still converging, we already see bias in the recovery when the model does not include all the physics of the injection



### Parameter Estimation of a Hyperbolic Encounter



- Self-force theory are the leading method to produce extreme mass ratio systems
- While SF can produce a long inspiral, it still breaks down near merger
- NR can be pushed to larger extreme mass ratio systems, but this requires large computing time for only a limited duration waveform
- Hybridization is the method of stitch together one waveform to another
- Allow us to run relatively limited separation simulations to use with hybrids

A Hybridized SF-NR waveform would allow for an arbitrary long IMR waveform



### Figure 4 from [18]

### Results: RIT

Window length = 7 GW cycles

Hybridized waveform for RIT:BBH:0792 (q=31.997), with 16 NR cycles and 50 SF cycles



### Results: RIT

Error within hybridization window for RIT:BBH:0792 (q=32.00)

- Lowest window error:  $7.04 \times 10^{-4}$
- Location: 16 cycles
- Length: 7 cycles



### References

[1] D. Ferguson. Phys. Rev. D, 102, 024034 (2023)

[2] M. Boyle, D. Hemberger, D. A. B. lozzo, et. al. CGQ 36, 195006 (2019)

[3] J. Healy and C. O. Lousto Phys. Rev. D, 105, 124010 (2022)

[4] K. Jani, J. Healy, J. A. Clark, et. al. CHQ 33, 204001 (2016)

[5] J. Lange. "RIFT'ing the Waves: Developing and applying an algorithm to infer properties of gravitational wave sources" (2020). Thesis. Rochester Institute of Technology Accessed from <a href="https://scholarworks.rit.edu/theses/10586">https://scholarworks.rit.edu/theses/10586</a>

[6] The LIGO and Virgo Collaboration. ApJL, 900, L13 (2020)

[7] J Lange, R. O'Shaughnessy, M. Boyle, et. al. Phys, Rev D 96, 104041 (2017)

[8] The LIGO and Virgo Collaboration. Phys. Rev. D, 94, 064035 (2016)

[9] J. Healy, J. Lange, R. O'Shaughnessy, et. al. Phys. Rev. D, 97, 064027 (2018)

[10] V. Varma, et. al. Phys. Rev. D, 99, 064045 (2018)

[11] D. Ferguson, et. al. Phys Rev. D, 104, 044037 (2021)

[12] The LIGO and Virgo Collaboration. ApJ, 883, 148 (2019)

[13] P. C. Peters. Phys. Rev. 136, B1224 (1964)

[14] The LIGO and Virgo Collaboration. Phys. Rev. L 116, 061102 (2016)

[15] The LIGO and Virgo Collaboration. Phys. Rev. L 116, 241102 (2016)

[16] A. Ghosh, et. al. Phys. Rev. D 94, 021101 (2016)

[17] Lousti C. O., Healy, J. CQG Volume 40, Issue 9,

## Hybridization procedure

 Procedure is based on approach used to create NRHybSur3dq8<sup>1</sup>: 1. Match  $\Omega_{22}$  at start of window

2. Find optimal time, phase shifts

$$\mathcal{E}[\hbar, \tilde{\hbar}] = \frac{1}{2} \frac{\sum_{\ell, m} \int_{t_1}^{t_2} |h_{\ell m}(t) - \tilde{h}_{\ell m}(t)|^2 dt}{\sum_{\ell, m} \int_{t_1}^{t_2} |h_{l m}(t)|^2 dt}$$

3. Apply time, phase shifts and stitch waveforms together

4. Repeat 1-3 for each set of window location and length



### Appendix B: Higher-order modes

Window length = 7 GW cycles

Hybridized waveform for RIT:BBH:0792 (q=31.997), with 16 NR cycles and 50 SF cycles



RIT:BBH:0792