

MACHINE LEARNING CLUSTERING OF SPIKE PROTEIN MUTATIONS

Adele de Hoffer, Shahram Vatani, Corentin Cot, Giacomo Cacciapaglia, Maria Luisa Chiusano, Andrea Cimarelli, Francesco Conventi, Antonio Giannini, Stefan Hohenegger, Francesco Sannino

Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19.

Sci Rep 12, 9275 (2022). https://doi.org/10.1038/s41598-022-12442-8

THE BASIC IDEA

Spike protein single sequence

	EPI ISL	ORIGIN LAB	DATE	Sequence	Month
0	610245	Virology	2020-01-29	MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS	1
1	407071	Respiratory Virus Unit	2020-01-29	MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS	1
2	407073	Respiratory Virus Unit	2020-01-29	${\sf MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS}$	1
3	464304	Respiratory Virus Unit	2020-02-03	MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS	2
4	459960	Respiratory Virus Unit	2020-02-03	${\sf MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS}$	2
261792	1375051	Lighthouse Lab in Glasgow	2021-03-20	${\sf MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS}$	15
261793	1374351	Lighthouse Lab in Glasgow	2021-03-20	${\sf MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS}$	15
261794	1374374	Lighthouse Lab in Glasgow	2021-03-20	${\sf MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS}$	15
261795	1374391	Lighthouse Lab in Glasgow	2021-03-20	MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS	15
261796	1377027	Lighthouse Lab in Cambridge	2021-03-21	MFVFLVLLPLVSSQCVNLTTRTQLPPSYTNSFTRGVYYPDKVFRSS	15

 $14 \\ 15$

(*) see: Bioinformatics, 36(9), 2020, 2697–2704

(*) see: Bioinformatics, 36(9), 2020, 2697–2704

(*) see: Bioinformatics, 36(9), 2020, 2697–2704

THE COOK RECIPT: 2) BUILD TIME SERIES

Spike protein single sequence

Cluster of sequences (at time t)

Time series of sequ	uences
---------------------	--------

CLUSTERING (ON SEQUENCES)

• We need a distance defined on 1274 (or similar) chars string:

• We need a criteria to build trees

Levenshtein distance: the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other

Tree obtained aggregating elements based on thier Ward distances

• How to choose the working point?

Ward's method says that the distance between two clusters, A and B, is how much the sum of squares will increase when we merge them:

$$\Delta(A,B) = \sum_{i \in A \cup B} \|\vec{x}_i - \vec{m}_{A \cup B}\|^2 - \sum_{i \in A} \|\vec{x}_i - \vec{m}_A\|^2 - \sum_{i \in B} \|\vec{x}_i - \vec{m}_B\|^2 (2)$$

$$= \frac{n_A n_B}{n_A + n_B} \|\vec{m}_A - \vec{m}_B\|^2$$
(3)

where \vec{m}_j is the center of cluster j, and n_j is the number of points in it. Δ is called the **merging cost** of combining the clusters A and B.

WORKING POINTS

We need to find the right **tradeoff** between the **number of custers** and the **percentage** of the dataset we are analysing, **varying the cut and the threshold**

WORKING POINTS

We need to find the right **tradeoff** between the **number of custers** and the **percentage** of the dataset we are analysing, **varying the cut and the threshold**

WORKING POINTS

Setting:

Threshold = 100 Minimum Cluster size = 0.01

It is a good option to keep a good dataset coverage without increase too much the numbers of clusters.

HIERARCHICAL CLUSTERING RESULTS:

How to link consecutive clusters? - Connect two or more consecutive clusters if have same dominant sequence \rightarrow Chain definition

HIERARCHICAL CLUSTERING RESULTS:

How to link consecutive clusters?

Connect two or more consecutive clusters if have same dominant sequence
→ Chain definition

+ Branching algorithm!(*)

Algorithm 2 Branching algorithm for find the parenthood of cluster i
n = month of cluster i
s = empty array
for All the cluster k in month n-1 do
$s_k = \operatorname{Number}$ of sequence in common between cluster i and cluster k
end for
if s not empty then
Look at the maximum value of s_k
k is the parent of i
end if

										ti	me
- <mark>3 4</mark> 6	8	10	12	17	24	27	30	32	34	36	40
5 7	9	11	13	18	25	28	31	33	35	37	41
			14	19	26	29				38	39
			15	20	23						
ence			16	21							
				22							

(*) (inherithed from HEP MC truth parentID)

SPIKE PROTEIN TIME-SERIES

Are the dominant variants time-ordered cluster chains??

CROSS-COUNTRY VALIDATION

- Same procedure applied on Wales and Scotland dataset (*number of sequences* = O(10-1)) in blind mode!
- We kept the same working point for the clustering procedure
- <u>Results reproduce the dominant</u> <u>variants spread also for Wales and</u> <u>Galles!</u>

EARLY WARNING TOOL?

Total sequences Number of alpha

Time resolution here is 1 month..we can try to reduce the time binning...

HEAT MAP FOR TIME ORDERED CLUSTER CHAIN: V0

EARLY WARNING TOOL

The first case of alpha variant is registered on 2020-09-20

Cal. week	Date (Mon)	Total seq.	% of Alpha VoC	No. of clusters	
38	14 Sept.	1948	0.05	-	First detection
39	21 Sept.	3394	0.06	-	
40	28 Sept.	2203	0.09	5	
41	5 Oct.	3891	0.1	5	
42	12 Oct.	4598	0.07	5	
43	19 Oct.	5921	0.4	2	
44	26 Oct.	4557	1.5	1	First warning (weekly)
45	2 Nov.	7589	3	1	
46	9 Nov.	7200	7	1	
47	16 Nov.	4669	12	1	Emerging persistent variant (weekly)
48	23 Nov.	2343	12	1	
49	30Nov.	1971	21	1	First warning (monthly)
50	7 Dec.	6382	38	1	
51	14 Dec.	8059	50	1	
52	21 Dec.	4864	53	1	
53	28 Dec.	7766	65	1	WHO classification as VoC

EARLY WARNING TOOL

The first case of alpha variant is registered on 2020-09-20

Total seq.	% of Alpha VoC	No. of clusters	
1948	0.05	-	First detection
3394	0.06	-	
2203	0.09	5	
3891	0.1	5	
4598	0.07	5	
5921	0.4	2	
4557	1.5	1	First warning (weekly)
7589	3	1	
7200	7	1	
4669	12	1	Emerging persistent variant (weekly)
2343	12	1	
1971	21	1	First warning (monthly)
6382	38	1	
8059	50	1	
4864	53	1	
7766	65	1	WHO classification as VoC

Omicron results (last update on UK data)

EMBEDDING AND T-SNE

Using NLP approach (\rightarrow ProtVec (*)) to represent each sequence as $\vec{a} \in \mathbb{R}^n$ vector

(*) PLoS ONE 10(11): e0141287, 2015

EMBEDDING AND T-SNE

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSS...

- Each 3-gram (word) is embedded in a 100 dim vector
- Weights are used to represent a 3-grams

(*) https://lvdmaaten.github.io/tsne/

FUTURE WORK: NLP AND GRAPH NN INTERPRETATION