A measurement of the W boson mass at CMS

Lorenzo Bianchini Università e INFN Pisa

European Research Council Established by the European Commission

Seminar, Pisa 26/09/2024

- First CMS measurement of m_W (<u>CERN seminar</u>)
 - <u>CMS-PAS-SMP-23-002</u>
- Long-term involvement of CMS Pisa group in m_W
 - Main contribution to this work
- Highly intricate analysis ("The devil is in the details")
 - Today I won't be exhaustive in all details $\textcircled{\odot}$

The SM prediction for m_W

$$\boldsymbol{m}_{\boldsymbol{W}}^{2} = \frac{\boldsymbol{m}_{\boldsymbol{Z}}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{\boldsymbol{E}\boldsymbol{M}}}{\sqrt{2}G_{F}\boldsymbol{m}_{\boldsymbol{Z}}^{2}}} \right)$$

-

_

The SM prediction for m_W

$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_F m_Z^2}} \right) \Rightarrow \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_F m_Z^2}} \right)$$

$$\Delta \mathbf{r} = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2 \tan^2 \theta_W} + \frac{11G_F m_W^2}{24\sqrt{2}\pi^2} \ln \frac{m_H^2}{m_W^2} + \cdots$$

See e.g. JHEP 05 (2015) 154

The SM prediction for m_W

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \implies \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} (1 + \Delta r) \right)$$

$$\begin{array}{c} m_{Z} = 911880 \pm 2.0 \; \text{MeV} \\ m_{H} = 125.20 \pm 0.11 \; \text{GeV} \\ m_{t} = 172.57 \pm 0.29 \; \text{GeV} \end{array} \begin{array}{c} \text{SM @ 2 loops} \\ \text{SM @ 2 loops} \end{array} \begin{array}{c} m_{W} = 80353 \pm 6 \; \text{MeV} \; (75 \; \text{ppm}) \end{array} \end{array}$$

$$\Delta \mathbf{r} = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2 \tan^2 \theta_W} + \frac{11G_F m_W^2}{24\sqrt{2}\pi^2} \ln \frac{m_H^2}{m_W^2} + \cdots$$

See e.g. JHEP 05 (2015) 154

The SM prediction for m_W

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \implies \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} (1 + \Delta r) \right)$$

$$m_{Z} = 911880 \pm 2.0 \text{ MeV}$$

$$m_{H} = 125.20 \pm 0.11 \text{ GeV}$$

$$m_{H} = 172.57 \pm 0.29 \text{ GeV}$$

$$M_{W} = 80353 \pm 6 \text{ MeV} (75 \text{ ppm})$$

$$m_{W} = 80353 \pm 6 \text{ MeV} (75 \text{ ppm})$$

$$m_{Z} = -\frac{3G_{F}m_{L}^{2}}{8\sqrt{2}\pi^{2} \tan^{2}\theta_{W}} + \frac{11G_{F}m_{W}^{2}}{24\sqrt{2}\pi^{2}} \ln \frac{m_{H}^{2}}{m_{W}^{2}} + \cdots$$

$$M_{Z} = -\frac{3G_{F}m_{L}^{2}}{8\sqrt{2}\pi^{2} \tan^{2}\theta_{W}} + \frac{11G_{F}m_{W}^{2}}{24\sqrt{2}\pi^{2}} \ln \frac{m_{H}^{2}}{m_{W}^{2}} + \cdots$$

Nature Reviews Physics 6 (2024) 180

1992

	1142 (1992)	SM
992	CDE 0 (1001)	70.020 ± 370
002	CDF 0 (1991)	79,928 ± 390
	ALEPH (2001)	80,477 ± 50
	DELPHI (2001)	80,399 ± 67
	L3 (2001)	80,389 ± 70
	OPAL (2001)	80,491 ± 65
	LEP avg. (2002)	80,450 ± 40
×	DØ1(2002)	80,483 ± 84
	CDF1 (2001)	80,433 ± 79
0	Tev. avg. (2004)	80,456 ± 59
	Tev. + LEP avg. (2002)	80,452 ± 33
5	ALEPH (2003)	80,385 ± 58
2	DELPHI (2003)	80,402 ± 75
	L3 (2003)	80,367 ± 78
24	OPAL (2003)	80,495 ± 67
	LEP avg. (2004)	80,412 ± 42
\leq	Tev. + LEP avg. (2004)	80,426 ± 34
Q	ALEPH (2006)	80,440 ± 51
7	DELPHI (2008)	80,336 ± 67
lo l	L3 (2006)	80,270 ± 55
2.	OPAL (2006)	80,415 ± 52
IS.	LEP avg. (2013)	80,376 ± 33
0	DØ II (2009)	80,402 ± 43
n	DØ II (2012)	80,369 ± 26
	DØ II avg.	80,376 ± 23
	CDF II (2007)	80,413 ± 48
	CDF II (2.2 fb-1)	80,401 ± 19
	CDF II (2022)	80,433 ± 9.4 🔶
	ATLAS (2018)	80,370 ± 19
	LHCb (2022)	80,354 ± 32
ว∩วว	Tev. avg. (2022)	80,427 ± 9
ZUZZ	Tev. + LEP avg. (2022)	80,424 ± 9 🔷
1	79,600 79,800	80,000 80,200 80,400
	W bosor	n mass (MeV by per c²)

+2 new results in 2024

Two weeks ago

Hadron colliders

 $W \rightarrow q \overline{q}$ unfeasible \Rightarrow focus on $W \rightarrow \ell \nu$ decay

Hadron colliders

→ Benefits of $m_T^{\ell \nu}$ vastly reduced at the LHC

L. Bianchini

Hadron colliders

Experimental accuracy on p_T^ℓ

26.09.2024

L. Bianchini

Parton Density u v w^{+} Functions $q_i(x, Q)$ d d γ γ γ γ γ q ℓ^+

Phenomenology

Phenomenology	
Soft/collinear partonic radiation	
0000000 g g	ν
Parton Density ^u	
$q_i(x,Q)$ $dm_{\bar{d}}$ m_{γ} m_{γ}	γ
Intrinsic	
quark p_T	

Soft/collinear partonic radiation Hard g/qradiation (0000000 g ν X000001 W^+ u**Parton Density Functions** $q_i(x,Q)$ Intrinsic quark p_T

Model-dependent uncertainties

Parton Density	p_T^W spectrum	Angular	Missing EWK
Functions		Coefficients	corrections
5 – 9 MeV	2 – 30 MeV	2 – 3 MeV	2 – 5 MeV

PDFs

- Historically, top-ranked in modeling systematics
 - But PDFs improve with time
- Several PDF sets available:
 - Point of concern: spread of central values not always covered by PDF uncertainty

p_T^W modeling

- Reminder: more relevant at the LHC
 - Recent progress in resummation not yet fully exploited

PLB 845 (2023) 138125

p_T^W modeling

- Reminder: more relevant at the LHC
 - Recent progress in resummation not yet fully exploited
- ALL m_W measurements to date calibrate p_T^W with highly-precisely measured p_T^Z data

PLB 845 (2023) 138125

p_T^W modeling

- Reminder: more relevant at the LHC
 - Recent progress in resummation not yet fully exploited
- ALL m_W measurements to date calibrate p_T^W with highly-precisely measured p_T^Z data
- Z-to-W porting sensitive to different flavor composition of initial state
 - model-dependent assumptions on correlations

State-of-the-art calculations	
Smaller/reliable TH uncertainties	

State-of-the-art calculations	Z data ONLY as a validation sample
Smaller/reliable TH uncertainties	No ambiguity from <i>Z</i> -to- <i>W</i> extrapolation

-0

State-of-the-art calculations	Z data ONLY as a validation sample	In-situ constraint
Smaller/reliable TH uncertainties	No ambiguity from <i>Z</i> -to- <i>W</i> extrapolation	Full exploitation of the data → profiling of nuisance parameters

State-of-the-art calculations	Z data ONLY as a validation sample	In-situ constraint
Smaller/reliable TH uncertainties	No ambiguity from Z-to-W extrapolation	Full exploitation of the data → profiling of nuisance parameters
-	Less constraining power. Poorer pre-fit agreement	Trust your correlation model!

High-statistics, high-granularity

- <u>CMS</u>: extract m_W from the **muon momentum** alone (\rightarrow **Pile-Up insensitive**)
 - Can use full LHC data samples
 - Electron channel / $m_T^{\ell\nu}$ deferred to future work (loose $m_T^{\ell\nu} > 40$ GeV for S/N)

High-statistics, high-granularity

- <u>CMS</u>: extract m_W from the **muon momentum** alone (\rightarrow **Pile-Up insensitive**)
 - Can use full LHC data samples
 - Electron channel / $m_T^{\ell\nu}$ deferred to future work (loose $m_T^{\ell\nu} > 40$ GeV for S/N)
- Split events in granular 3D space: $p_T^{\ell} \times \eta^{\ell} \times charge$

	p_T^ℓ	$\eta^{\ell} \times charge$
Sensitive to:	p_T^W , m_W	PDFs, A_i

High-statistics, high-granularity

- <u>CMS</u>: extract m_W from the **muon momentum** alone (\rightarrow Pile-Up robust)
 - Can use full LHC data samples
 - Electron channel / $m_T^{\ell\nu}$ deferred to future work (loose $m_T^{\ell\nu} > 40$ GeV for S/N)
- Split events in granular 3D space: $p_T^{\ell} \times \eta^{\ell} \times charge \rightarrow 2880$ bins

Muons in CMS

- Two-stage reconstruction
 - Tracker track matched with muon track
 - Additional identification criteria
- Reco/ID efficiencies measured in data using $Z \rightarrow \mu\mu$ events
 - Careful factorization of each reconstruction/identification step
- Uncertainties propagated through O(3,000) nuisance parameters
 - Impact on $m_W o \sim 3$ MeV

The CMS tracker

- Up to ~17 points per track
 - Single-hit resolution $9-50 \ \mu m$

The CMS tracker

- Up to ~17 points per track
 - Single-hit resolution $9-50 \ \mu m$
- Tracking efficiency > 99%

The CMS tracker

- Up to ~17 points per track
 - Single-hit resolution 9 50 μm
- Tracking efficiency > 99%
- Up to 2 radiation lengths

Momentum resolution

Momentum scale

- Target is $\frac{\delta p_T^{\mu}}{p_T^{\mu}} \lesssim 10^{-4}$ for ~40 GeV muons $\Rightarrow |\delta s| \lesssim 600$ nm
- Challenges:
 - Relative **alignment** of all tracker modules NOT known to this level
 - Material only known within ${\sim}10\%$
 - A priori knowledge of $\textit{B-field} \sim 10^{-3}$

Momentum scale

- Target is $\frac{\delta p_T^{\mu}}{p_T^{\mu}} \lesssim 10^{-4}$ for ~40 GeV muons $\Rightarrow |\delta s| \lesssim 600$ nm
- Challenges:
 - Relative **alignment** of all tracker modules NOT known to this level
 - Material only known within ${\sim}10\%$
 - A priori knowledge of *B***-field** $\sim 10^{-3}$

→ Calibration of momentum scale in data

Observation: Even for ideal MC, scale was NOT unity

1. Tuning of parameters in CMS simulation

- 1. Tuning of parameters in CMS simulation
- 2. Track re-fit with improved B-field/material treatment based on *Geant4e* (CVH refit)

- 1. Tuning of parameters in CMS simulation
- 2. Track re-fit with improved B-field/material treatment based on *Geant4e* (CVH refit)

3. Global correction of alignment/B-field/material at the per-module level using J/Ψ events

- 1. Tuning of parameters in CMS simulation
- 2. Track re-fit with improved B-field/material treatment based on *Geant4e* (CVH refit)
- **3.** Global correction of alignment/B-field/material at the per-module level using J/Ψ events
- **4.** Residual scale bias measured on J/Ψ events in a fine-grained 4D space $(p_T^+, \eta^+, p_T^-, \eta^-)$ by fitting a *parametric* model

$$\left(\frac{\delta p_T}{p_T}\right)_{\pm} = \mathbf{A}_{\boldsymbol{\eta}} - \frac{\boldsymbol{\varepsilon}_{\boldsymbol{\eta}}}{p_T} \pm \mathbf{M}_{\boldsymbol{\eta}} p_T$$

Closure on Υ and Z

- Parametric corrections from J/ Ψ applied to $\Upsilon, Z \rightarrow \mu\mu$ events
 - Repeat Step 4. ⇒ derive residual scales for <u>B-field</u> and <u>alignment</u>

Closure on Υ and Z

- Parametric corrections from J/ Ψ applied to $\Upsilon, Z \rightarrow \mu\mu$ events
 - Repeat Step 4. ⇒ derive residual scales for <u>B-field</u> and <u>alignment</u>
- 16.8 fb⁻¹ (13 TeV) 16.8 fb⁻¹ (13 TeV) <u>×10⁻⁶</u> Compatibility with null scale ×10⁻⁴ p^µ scale م ∞ curvarture bias (GeV⁻¹) $rightarrow \chi^2/ndf = 51.1/24$ $+ \chi^2/ndf = 24.2/24$ **CMS** *Preliminary* **CMS** *Preliminary* assessed through a χ^2 -test 40 **B**-field Alignment • Scaling of J/Ψ stat. uncert. by 20 2.1 was needed to cover for the largest χ^2 /ndof -20 $Z \rightarrow \mu \mu$ $Z \rightarrow \mu \mu$ $Y \rightarrow \mu \mu$ $Y \rightarrow \mu \mu$ $J/\psi \rightarrow \mu \mu$ $J/\psi \rightarrow \mu\mu$ Calibration uncertainty (scaled) Calibration uncertainty (scaled) -40Calibration uncertainty Calibration uncertainty -1 -2 2 1 -1 -2

Closure on Υ and Z

- Parametric corrections from J/ Ψ applied to $\Upsilon, Z \rightarrow \mu\mu$ events
 - Repeat Step 4. ⇒ derive residual scales for <u>B-field</u> and <u>alignment</u>

Impact on $m_W \rightarrow 4.8$ MeV

Closure test

• Validation of scale calibration by fitting the $(m^{\mu\mu}, \eta^{\mu-\text{fwd}})$ distribution

$$m_Z - m_Z^{PDG} = -2.2 \pm 4.8 \text{ MeV}$$

= -2.2 \pm 1.0 (stat) \pm 4.7 (syst) MeV

Not an independent measurement of m_Z

W and Z modeling

State-of-the art calculations for production and decay of W, Z

- $MiNNLO_{PS}$ + Pythia8 + Photos (\rightarrow NNLO)
- Reweighting of $\sigma_{\rm UL}$ to all-order resummed calculations from the *SCETLib* matched to *DYTurbo* (\rightarrow N³LL+NNLO)

- (p_T^Z, y^Z) kept unblinded at all times to help gauging the goodness of our model
- Residual \$\leq\$ 10% disagreement at low p_T^Z without tuning not unexpected

W and Z modeling

Non-perturbative

 Inspired by non pert. TMD PDFs + heuristic model for intrinsic partonic momentum

Resummation TNP

• Unknown coefficients of truncated expansion

 $f^{\mathrm{predicted}}(lpha) = f_0 + f_1 \, lpha + f_2 \, lpha^2 + f_3(heta_3) \, lpha^3$

- Fixed-order + matching
 - Relevant at high p_T^V

Impact on $m_W \rightarrow \sim 2 \text{ MeV}$

JHEP07(2022)129

PDFs

- n = 7 modern sets of PDFs have been considered
- For each set, we determine inflation factors needed to cover the other n-1

• i.e.
$$|m_W^{\text{alt.}} - m_W^{\text{nom.}}| \le \sigma_{\text{PDF}}$$

- We choose CT18Z as our nominal PDF
 - gives a good pre-fit agreement on y^Z
 - covers other sets within its original unc.

Impact on $m_W \rightarrow \sim 4.4$ MeV

PDF set	Scale factor	Impact in m_W (MeV) Original σ_{PDF} Scaled σ_{PDF}				
CT18Z	-	4.4				
CT18	-	4.6				
PDF4LHC21	_	4.1				
MSHT20	1.5	4.3	5.1			
MSHT20aN3LO	1.5	4.2	4.9			
NNPDF3.1	3.0	3.2	5.3			
NNPDF4.0	5.0	2.4	6.0			

Model validation

- Theory model validated by fitting (p_T^Z, y^Z) spectrum
 - Agreement at the permille level
- This gives us confidence (p_T^W, y^W)
 will be equally well described from the likelihood fit to W data ONLY
- We want to prove it in a more Wlike configuration

Validation: W-like

• Select $Z \rightarrow \mu\mu$ events and treat one muon at the time as a neutrino

W-like: p_T^Z modeling ×10¹ CMS Unfolded data 8 Preliminary $(p_T^{\mu\mu}, y^{\mu\mu})$ $- m_Z (p_T^{\mu}, \eta^{\mu}, q^{\mu})$ 6 prefit Unfolded (p_T^Z, y^Z) Δ N 0 Ratio to prefit .0 $(p_T^{\mu\mu}, y^{\mu\mu})$

10

0.9

0

 $= m_Z (p_T^\mu, \eta^\mu, q^\mu)$

20

30

(13 TeV)

.

40

prefit

50

 $p_{\rm T}^{\rm Z}$ (GeV)

W-like: results

- Total uncertainty on m_Z is 13.5 MeV
 - Muon scale (5.6), angular coeff. (4.9), muon reco (3.8)
 - m_Z kept blind until all checks completed

W-like: results

- Total uncertainty on m_Z is 13.5 MeV
 - Muon scale (5.6), angular coeff. (4.9), muon reco (3.8)
 - m_Z kept blind until all checks completed

Moving to the *W*

Non-prompt background

- Mostly muons from B/C hadrons decay (~85%)
- Data-driven estimation using an extremded ABCD method based on $iso: m_T$
 - Validated with QCD simulation and SV-sideband

 Functional dependence of each region on p_T is enforced:

 $f_i(p_T) \propto e^{-(a_i p_T^2 + b_i p_T + c_i)}$

Impact on $m_W \rightarrow \sim 3 \text{ MeV}$

Unblinding the W fit

- Total uncertainty on m_W is 9.9 MeV
 - m_W kept blinded until all check completed

		Impa	ct
Source of uncertainty	Nom	inal	
	in $m_{\rm Z}$	in <i>m</i> w	
Muon momentum scale	5.6	4.8	
Muon reco. efficiency	3.8	3.0	
W and Z angular coeffs.	4.9	3.3	
Higher-order EW	2.2	2.0	
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	
PDF	2.4	4.4	
Nonprompt background	_	3.2	
Integrated luminosity	0.3	0.1	
MC sample size	2.5	1.5	
Data sample size	6.9	2.4	_
Total uncertainty	13.5	9.9	

Results

$m_W = 80360.2 \pm 9.9$ MeV

Test of model dependence

PDF dependence

Comparison w/ ATLAS

arXiv:2403.15085

Unc. [MeV] Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
$p_{\rm T}^{\ell}$ 16.2	11.1) 11.8	4.9	3.5	1.7 (5.6) 5.9	5.4	0.9	1.1	0.1	1.5

		Impact (MeV)				
	Source of uncertainty	Nominal		Global		
		in $m_{\rm Z}$	in m_W	in $m_{\rm Z}$	in m_W	
	Muon momentum scale	5.6	4.8	5.3	4.4	
	Muon reco. efficiency	3.8	3.0	3.0	2.3	
	W and Z angular coeffs.	4.9	3.3	4.5	3.0	
For "global" impacts	Higher-order EW	2.2	2.0	2.2	(1.9)	
	$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8	
see arXiv:2307.04007	PDF	2.4	4.4	1.9	(2.8)	
	Nonprompt background	_	3.2	_	1.7	
	Integrated luminosity	0.3	0.1	0.2	0.1	
	MC sample size	2.5	1.5	3.6	3.8	
	Data sample size	6.9	2.4	10.1	6.0	
	Total uncertainty	13.5	9.9	13.5	9.9	

CMS-PAS-SMP-23-002

The EWK fit and direct CMS (m_t, m_W)

L. Bianchini

Conclusions

- First measurement of m_W by CMS
- Most precise measurement at the LHC
 - Approaching the precision of CDF
- Good agreement with the SM prediction and with the PDG-average (excluding CDF)
- The first in a line of new precision EWK measurements by CMS

Thanks to all CMS and Pisa collaborators

Grazie per l'attenzione!

Towards the W boson

- E. Fermi (1934): a theory of β-decay
- R. Glashow (1961): a model of partial symmetries (γ, W^+, W^-, Z^0)
- S. Weinberg (1967): a model of leptons

$$m_W^2 = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F \sin^2 \theta_W} \gtrsim (40 \text{ GeV})^2$$

$$m_Z^2 = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F \sin^2 \theta_W \cos^2 \theta_W} \gtrsim (80 \text{ GeV})^2$$
GARGAMELLE (1973): $\sin^2 \theta_W \in [0.3, 0.4]$

$$m_W \in [60, 80] \text{ GeV}$$

$$m_Z \in [75, 92] \text{ GeV}$$
C. Rubbia *et al.* (1976-1983): *W*, *Z* discovery
$$m_Z = 91.5 \pm 1.8 \text{ GeV}$$

The EWK fit in the post-Higgs era

Eur. Phys. J. C78, 675 (2018)

 M_W as a probe of NP

- Pivotal role in determination of oblique parameters S,T,U
 - bounds on universal new physics

Measuring m_W at hadron colliders

- $W \to q \bar{q}$ unfeasible \rightarrow focus on $W \to \ell \nu$ decay
 - But: v's cannot be reconstructed

Lepton p_T^ℓ

- **<u>GOOD</u>**: enhancement at Jacobian peak
- **<u>BAD</u>**: very sensitive to *W* dynamics

$$p_T^{\ell} \stackrel{\mathbf{p}_T^W}{\Rightarrow} p_T^{\ell} \left(1 + \mathcal{O}\left(\frac{p_T^W}{m_W}\right) \right)$$

Measuring m_W at hadron colliders

- $W \to q \bar{q}$ unfeasible \rightarrow focus on $W \to \ell \nu$ decay
 - But: v's cannot be reconstructed

"Transverse mass" $m_T^{\ell
u}$

$$m_T^{\ell \nu} = \sqrt{2(p_T^{\ell} | \mathbf{p}_T^{\ell} + \mathbf{p}_T^W | + p_T^{\ell 2} + \mathbf{p}_T^{\ell} \cdot \mathbf{p}_T^W)}$$

• **<u>GOOD</u>**: less sensitive to W dynamics

$$m_T^{\ell \nu} \stackrel{\mathbf{p}_T^W}{\Rightarrow} m_T^{\ell \nu} \left(1 + \mathcal{O}\left(\frac{p_T^W}{m_W}\right)^2 \right)$$

• **<u>BAD</u>**: requires knowledge of p_T^W

Measuring m_W at hadron colliders

• $\mathbf{p}_T^W \sim \mathbf{hadronic\ recoil\ } (\mathbf{u}_T)$ • \mathbf{u}_T resolution degraded by Pile-Up

Experimental accuracy: p_T^l

Impact of a 10 MeV shift of M_W on the p_T^l spectrum $\rightarrow 0.1\%$

- This is unlike other mass measurement which can rely on neat mass peaks
 - The full W production x decay chain must be modeled at the 1% level

Profiling

Model uncertainties as Nuisance Parameters

$$-2\ln \mathscr{L}_{NP}(\vec{\theta}, \vec{\alpha}) = \sum_{i,j} \left(m_i - t_i(\vec{\theta}) - \sum_r \Gamma_{ir}(\alpha_r - a_r) \right) V_{ij}^{-1} \left(m_j - t_j(\vec{\theta}) - \sum_s \Gamma_{js}(\alpha_s - a_s) \right) + \sum_r (\alpha_r - a_r)^2.$$

- Already considered in LHCb and ATLAS re-analysis
- Clear advantage when model uncertainties can be constrained by the data

Muon isolation

- Special treatment of isolation efficiency needed to remove potential bias
 - Related to interplay with hadronic recoil

Track momentum

- B-field measured in 2006 at the surface of the cavern and with empty coil
 - Hall probes calibrated to 3×10^{-4}
 - $\frac{\Delta B}{B} = -8 \times 10^{-4}$ between surface and *in* situ NMR survey
- Track fit uses a TOSCA map for B-field
 - Differences up to 2 mT compared to in situ survey (with some z –dependence)

B-field known a priori within $< 10^{-3}\,$

Muon momentum scale

4. Removal of residual data/MC scale bias using J/ Ψ events in a finegrained 4D space $(p_T^+, \eta^+, p_T^-, \eta^-)$

- Fit a scale shift *∑* in each 4D bin
- Finally, do a χ^2 fit of $(A_\eta, \varepsilon_\eta, M_\eta)$ from all bins

$$\sum_{ijkl} \frac{\left(\Sigma_{ijkl}^{2} - \left(\boldsymbol{A}_{j} - \frac{\boldsymbol{\varepsilon}_{j}}{p_{T,i}} + \boldsymbol{M}_{j}p_{T,i}\right)\left(\boldsymbol{A}_{l} - \frac{\boldsymbol{\varepsilon}_{l}}{p_{T,k}} + \boldsymbol{M}_{l}p_{T,k}\right)\right)^{2}}{\operatorname{Var}[\Sigma_{ijkl}^{2}]}$$

Parametrized scale corrections

• Scale correction in the range $(5 \div 10) \times 10^{-4}$

 Model suited for extrapolating scale correction/uncertainty at any value of p_T

Impact on m_W

Source of uncertainty	Nuisance parameters	Uncertainty in m_W (MeV)
J/ψ calibration stat. (scaled $\times 2.1$)	144	3.7
Z closure stat.	48	1.0
Z closure (LEP measurement)	1	1.7
Resolution stat. (scaled $\times 10$)	72	1.4
Pixel multiplicity	49	0.7
Total	314	4.8

SUmmary

PDF

Fitting simultaneously eta_mu and yZ

PDE cot	Nominal fit		Without PI	$DF + \alpha_s$ unc.	Without theory unc.		
r Dr set	χ^2/ndf	<i>p</i> -val. (%)	χ^2/ndf	<i>p</i> -val. (%)	χ^2/ndf	<i>p</i> -val. (%)	
CT18Z	100.7/116	84	125.3/116	26	103.8/116	78	
CT18	100.7/116	84	153.2/116	1.0	105.7/116	74	
PDF4LHC21	97.7/116	89	105.5/116	75	104.1/116	78	
MSHT20	97.0/116	90	107.4/116	70	98.8/116	87	
MSHT20aN3LO	99.0/116	87	122.8/116	31	101.9/116	82	
NNPDF3.1	99.1/116	87	105.5/116	75	115.0/116	51	
NNPDF4.0	99.7/116	86	104.3/116	77	116.7/116	46	

Further checks

-

Configuration	$m^+_W-m^W~({ m MeV})$	$\Delta m_W \; ({ m MeV})$
nominal	57 ± 30	0
Alignment ${\sim}1$ sigma up	38 ± 30	< 0.1
LHE A_i as nominal	48 ± 30	-0.5
A_3 one sigma down	49 ± 30	0.4
Alignment and A_i shifted as above	21 ± 30	0.1
Alignment \sim 3 sigma up	-5 ± 30	0.6

Configuration	$\Delta m_{\rm W}$ in MeV	Auxiliary parameter
$26 < p_{\rm T} < 52 {\rm GeV}$	-0.75 ± 10.03	
$30 < p_{\rm T} < 56 { m GeV}$	-1.11 ± 11.05	—
$30 < p_{\rm T} < 52 {\rm GeV}$	-2.15 ± 11.17	—
W floating	-0.47 ± 9.98	$\mu_{ m W} = 0.979 \pm 0.026$
Alt. veto efficiency	0.05 ± 9.88	_
Hybrid smoothing	-1.58 ± 9.88	—
Charge difference	0.34 ± 9.89	$m_{ m W}^{ m diff.} = 56.96 \pm 30.30{ m MeV}$
η sign difference	-0.01 ± 9.88	$m_{ m W}^{ m diff.}=5.8\pm12.4{ m MeV}$
$ \eta $ range difference	-0.61 ± 9.90	$m_{\mathrm{W}}^{\mathrm{diff.}}=15.3\pm14.7\mathrm{MeV}$

EWK uncertainties

- Photos++ is used for FSR modeling at LL+MEC level + pair-production
 - uncertainty from MEC on/off and full Horace/Photos++ difference
- Uncertainty from missing virtual EW corrections using
 - ReneSANCe program (for W)
 - POWHEG-BOX-V2 (for Z)
- Photon ISR from Pythia
 - Uncertainty from QED PS on/off

Non perturbative

- Relevant for $p_T^V \lesssim 5 \; {\rm GeV}$
- Empirical model inspired by TMD PDFs
 - NP-model for the Collins-Soper kernel inspired/tuned on lattice data (flavor-independent)
 - Intrisic parton flavour inspired by TMD-PDFs (x-dependent)

$$\tilde{\sigma}^{
m np}(Y) = \left[1 + \overline{\Lambda}^{(2)}(Y) \, b_T^2\right]^2 \exp(-2\Lambda^{(4)} \, b_T^4) \,,$$

TNP

- Relevant for $5 \leq p_T^V \leq 20 \text{ GeV}$
- Theory Nusiance Parameteres → Treat uknown numerical coefficients in series expansion as uknown nuisance parameter

 $f^{\mathrm{predicted}}(lpha) = f_0 + f_1 \, lpha + f_2 \, lpha^2 + f_3(heta_3) \, lpha^3$

- Better suited than scale variations
- Provide a frameweork to correlate across phase-space and NC/CC

Model-dependent uncertainties

- Traditional approach (e.g. ATLAS):
 - Tuning of PS on ptZ data → Systematics correlated across W/Z do not proapagte to pTW
 - Large effect (5 MeV) from muF variation fo c/b
 - Would have been 30 MeV for fully uncorrelated
 - CDF Further reduction (x4.4) of pTW/pTZ uncertainty by constraining pTW on data

- Uncertainties of flavour correlation in PS / NP models well known
 PLB 788 (2019) 542
- Usage of MC program with reduced theoretical accuracy was another point of concern
 - Can be overcome now

Model

- Assessment of per-muon scale is new
 - Previous experiments looked at dimuon mass scale stability vs "average"

 $M_Z = 91 \ 192.0 \pm 6.4_{\text{stat}} \pm 4.0_{\text{syst}} \text{ MeV}$

$$[\Delta p/p]_{J/\psi+\Upsilon+Z} = (-1389 \pm 25) \text{ ppm}$$

26.09.2024

W: p_T^W modeling

- Postfit p^W_T spectra from two alterantive fits are compared:
 - $(q, p_T^{\mu}, \eta^{\mu})$
 - $(q, p_T^{\mu}, \eta^{\mu})$ and (p_T^Z, y^Z)
- Only a marginal gain from simultaneous fit
 - A feature of the largely uncorrelated uncertainty model

Charge asymmetry

- = $m_{W^+}-m_{W^-}=57\pm30$ MeV
 - *p*-value = 6%

Source of uncertainty	Global impact (MeV)				
Source of uncertainty	in $m_{Z^+} - m_{Z^-}$	in m_Z	in $m_{W^+} - m_{W^-}$	in $m_{\rm W}$	
Muon momentum scale	21.2	5.3	20.0	4.4	
Muon reco. efficiency	6.5	3.0	5.8	2.3	
W and Z angular coeffs.	13.9	4.5	(13.7)	3.0	
Higher-order EW	0.2	2.2	1.5	1.9	
$p_{\rm T}^{\rm V}$ modeling	0.4	1.0	2.7	0.8	
PDF	0.7	1.9	4.2	2.8	
Nonprompt background	_	-	4.8	1.7	
Integrated luminosity	< 0.1	0.2	0.1	0.1	
MC sample size	6.4	3.6	8.4	3.8	
Data sample size	18.1	10.1	13.4	6.0	
Total uncertainty	32.5	13.5	30.3	9.9	

- Likely, a combination of alignment/theory nuisances consistently pulled by ~1
 - no significant shift in m_W even for generous shifts of pre-fit NP

Charge asymmetry

- $m_{W^+} m_{W^-} = {f 57 \pm 30}~{
 m MeV}$
 - *p*-value = 6%
 - $\operatorname{Corr}(m_{W^+}, m_{W^-}) = -0.40$
 - Corr $\left(m_{W^+} m_{W^-}, \frac{m_{W^+} + m_{W^-}}{2}\right) = 0.02$
 - For comparison: $m_{Z^+} m_{Z^-} = 31 (6) \pm 32 \text{ MeV}$

Comparison w/ ATLAS & CDF-II

• To enable one-to-one comparison with ATLAS, use "global" impacts

Unc. [MeV] To	otal Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	μ _T	Lumi	Γ_W	PS
p_{T}^{ℓ} 10	5.2 11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5

	Impact (MeV)			
Source of uncertainty	Nor	ninal	Glo	obal
	in $m_{\rm Z}$	in m_W	in $m_{\rm Z}$	in m_W
Muon momentum scale	5.6	4.8	5.3	4.4
Muon reco. efficiency	3.8	3.0	3.0	2.3
W and Z angular coeffs.	4.9	3.3	4.5	3.0
Higher-order EW	2.2	2.0	2.2	1.9
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8
PDF	2.4	4.4	1.9	2.8
Nonprompt background	_	3.2	_	1.7
Integrated luminosity	0.3	0.1	0.2	0.1
MC sample size	2.5	1.5	3.6	3.8
Data sample size	6.9	2.4	10.1	6.0
Total uncertainty	13.5	9.9	13.5	9.9

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^Z$ model	1.8
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

arXiv:2307.04007

arXiv:2403.15085 CMS-PAS-SMP-23-002 Science 376 (2022) 6589

Summary of uncertainty model

Systematic uncertainties	W-like m_Z	m_{W}
Muon efficiency	3127	3658
Muon eff. veto	_	531
Muon eff. syst.	343	
Muon eff. stat.	2784	
Nonprompt background	_	387
Prompt background	2	3
Muon momentum scale	338	
L1 prefire	14	
Luminosity	1	
PDF (CT18Z)	60	
Angular coefficients	177	353
W MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	_	176
Z MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	176	
PYTHIA shower $k_{\rm T}$	1	
$p_{\rm T}^{\rm V}$ modeling	22	32
Nonperturbative	4	10
Perturbative	4	8
Theory nuisance parameters	10	
c, b quark mass	4	
Higher-order EW	6	7
Z width	1	
Z mass	1	
W width	_	1
W mass	_	1
$\sin^2 \theta_W$	1	
Total	3750	4859

QCD background

- Mostly muons from B/C hadrons decay (~85%)
- Data-driven estimation using an extremded ABCD method based on $rellso: m_T$
 - Validated with QCD simulation and SV-sideband

• Functional dependence of each region on p_T is enforced:

$$f_i(p_T) \propto e^{-(a_i p_T^2 + b_i p_T + c_i)}$$

Recoil

Example: CMS

CMS-TRK-10-003

- Typical muon from W decay in CMS looses $\Delta E \approx 20 60$ MeV by ionization
- Material known within 10% from detector simulation

10% material mismodeling $\Rightarrow \Delta |\mathbf{p}| = 2 - 6 \text{ MeV}$

- Some (known) approximations in Kalman-Filter tracking
 - Speed vs accuracy compromise

The W recoil in pQCD

See e.g. G. Altarelli et al. Nucl. Phys B 157 (1979) 461

Divergences cancel <u>exactly</u> for inclusive observables

For less inclusive observables large **logarithmic** terms are left-over

State of the art in resummation

Different techniques of resummation

→ (sub-leading) differences expected a priori

	Sudakov/ Resummation	Non-Sudakov	Matching
arTeMiDe	$\mu_f(\mu, \zeta_\mu)$	$\mu_{ ext{OPE}}$	No level 3
Cute-MCFM	μ , μ_h , r	μ_R, μ_F	Parameters of damping func.
DYTURBO	Q	μ_R, μ_F	Parameters of Damping func.
NangaParbat	Q, μ_b	μ_R, μ_F	Still none (damping func.)
RadISH	Q	μ_R, μ_F	Parameters of Damping func.
ResBos	C_1, C_2, C_3	μ_R, μ_F	Parameters of damping func.
Resolve	μ_S	μ_R, μ_F	No level 3
SCETlib	$\Delta_{ m resum}$	$\Delta_{ m FO}$	Profile scales Δ_{match}

[Figure credit: V. Bertone, November '21]

State of the art

Slides from <u>T. Neumann</u>

How well do we need to know it?

Model-dependent uncertainties

Non-perturbative aspects can be also relevant

See e.g. A. Bacchetta et al., Phys. Lett. B 788 (2019) 542

PDFs

Bozzi et al. Phys. Rev. D 91, 113005 (2015), Phys. Rev. D 83, 113008 (2011) Bagnaschi e Vicini, Phys. Rev. Lett. 126 (2021) 041801

NLO+PS accuracy

Calame et al., Phys.Rev. D69 (2004) 037301

Mixed QCD-EWK

Bonciani et al., Phys. Rev. Lett. 128 (2021) 012002 Beharing et al., PRD 103, 113002 (2021)

Hist stat. & high-granularity measurements

PRD 102 (2020) 092012

26.09.2024

Ultimate future for M_W

- Ultimate precision from nextgeneration of lepton colliders (>2040)
 - FCC-ee + 2y at threshold \rightarrow <u>0.5 MeV</u>

 Beyond any conceivable reach of hadron colliders

Generalities of W and Z production

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M\mathrm{d}\cos\vartheta\mathrm{d}\varphi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{W}\mathrm{d}y\mathrm{d}M} \\ \left\{ (1+\cos^{2}\vartheta) + A_{0}\frac{1}{2}(1-3\cos^{2}\vartheta) + A_{1}\sin2\vartheta\cos\varphi \\ &+ A_{2}\frac{1}{2}\sin^{2}\vartheta\cos2\varphi + A_{3}\sin\vartheta\cos\varphi + A_{4}\cos\vartheta \\ &+ A_{5}\sin^{2}\vartheta\sin2\varphi + A_{6}\sin2\vartheta\sin\varphi + A_{7}\sin\vartheta\sin\varphi \right\} \end{aligned}$$

- $d\sigma^{unpol}$ and A_i can be determined in pQCD (up to NP effects)
 - PDF-dependent
 - known at NNLO_{QCD} + NLO_{EWK}
 - Resummation-improved $d\sigma^{unpol}$ and A_4 available at N³LL+NNLO. N⁴LL just arrived

arXiv:2207.07056

CDF-II

Physics modeling: CTEQ6M+ResBosP(*p_T^Z)+Photos

- Detector modeling: custom MC simulation
- Calibration: data matched to J/Ψ , $\Upsilon(1s)$, Z.
- BLUE comb. of 6 channels: $(p_T^l, m_T, p_T^v) X (e, \mu)$
- Cross-checks: M_z, data-taking, +/-, detector region

DO

• Physics modeling: CTEQ6.6+ResBosCP($*p_T^Z$)+Photos

- Detector modeling: custom MC simulation
- Calibration: data matched to Z
- BLUE comb. of 3 channels: (p_T^l, m_T, p_T^v) x e
- Cross-checks: data-taking, detector region

Physics modeling: CT10+Powheg(*DYNNLO)+Pythia(*p_T^Z)+Photos

- Detector modeling: full MC simulation
- Calibration: simulation matched to Z data
- BLUE comb. of 28 channels: (p_T^l, m_T, p_T^v) X (e, μ) X η^l bin
- Cross-checks: detector region, +/-

LHCb

Physics modeling: NNPDF31+Powheg(*DYTurbo)+Pythia(*\phi_{ll})+Photos

- Detector modeling: full MC simulation
- Calibration: simulation matched to J/Ψ , $\Upsilon(1s)$, Z
- Measurement: simultaneous fit to q/p_T^l and ϕ_{ll}^*
- Cross-checks: polarity, detector region, W-like M_Z

Missing systematics

- Mixed QCD EWK corrections do DY have been computed
 - Not yet included by experiments
 - Some (crude) estimates of their effect in the literature:

corrections cause bigger shifts in m_W . For example, we estimate that the cuts employed by the ATLAS collaboration in their recent extraction of the W mass [5] may lead to a shift of about $\mathcal{O}(17)$ MeV due to unaccounted mixed QCD-electroweak effects in the production process. PRD 103, 113002 (2021)

- Impact of non-perturbative corrections to $p_T^{W/Z}$ yet to be understood
 - Assuming flavour non-universality of NP models can bring to additional O(10) MeV shifts

 m_T

-2

-2

-2

-2

-1

-3

9

0

4

(~200/pb).

 About 5M W events needed to reach 6 MeV statonly uncertainty (as for CDF-II)

Opportunities from low-PU runs

Dedicated low-PU runs delivered in 2017

- That is, > 1/fb of low-PU data, i.e. ~15/fb of lost high-PU data
- Further improvements expected from planned detector upgrades

115

CMS Average Pileup, pp, 2017, $\sqrt{\mathrm{s}}=$ 13 TeV

DO

Source	Section	m_T	p_T^e	E_T
Experimental				
Electron energy scale	VIIC4	16	17	16
Electron energy resolution	VIIC5	2	2	3
Electron shower model	VC	4	6	7
Electron energy loss	VD	4	4	4
Recoil model	VIID3	5	6	14
Electron efficiencies	VIIB10	1	3	5
Backgrounds	VIII	2	2	2
\sum (Experimental)		18	20	24
<i>W</i> production and decay model				
PDF	VIC	11	11	14
QED	VIB	7	7	9
Boson p_T	VIA	2	5	2
\sum (Model)		13	14	17
Systematic uncertainty (experimental and model)		22	24	29
W boson statistics	IX	13	14	15
Total uncertainty		26	28	33

CDF-II

Source of systematic	m_T fit				p_T^ℓ fit		p_T^{ν} fit			
uncertainty	Electrons	Muons	Common	Electrons	Muons	Common	Electrons	Muons	Common	
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8	
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3	
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7	
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2	
Lepton $u_{ }$ efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0	
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0	
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0	
p_T^Z model	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9	
p_T^W/p_T^Z model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9	
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0	
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4	

LHCb

Source	Size $[MeV]$
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

ATLAS

_

-0

Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27