

Muon Collider's detectors R&D

E. Di Meco on behalf of the RD_Mucol group

Riunione CSN1 LNF: European Strategy- October 18 2024

A Muon Collider

A Muon Collider is being considered as an option for a next generation facility; studies for 3 and 10 TeV designs are being carried out showing several advantages but also technological challenges.

Muon Collider pros:

- $m_{\mu} > m_{e}$ hence negligible synchrotron radiation
- Point-like particle: all energy is available for the collision
- perfect for direct search of heavy states
- **broad physics reach**: SM precision tests, BSM direct and indirect search, lepton flavour universality tests

Muon Collider cons:

- τ_0 = 2.2 μ s: very fast cooling and fast-ramping magnet system needed
- μ decay + interaction with machine: beam-induced background (BIB), partially shielded by nozzles
- Intensive neutrino flux

Higgs Physics @ Muon Collider

The last ESPPU identified Higgs Physics as the main physics target at future colliders:

- Measure Higgs couplings to fermions and bosons at ~O(1%) level
- Measure Higgs potential with multi-higgs processes

The Muon Collider is by all means a Higgs factory

Energy	Luminosity	number of Higgs
3 TeV	1 ab ⁻¹	5 x 10 ⁵
10 TeV	10 ab ⁻¹	9.5 x 10 ⁶
14 TeV	20 ab ⁻¹	2.2 x 10 ⁷
30 TeV	90 ab ⁻¹	1.2 x 10 ⁹

Coupling precisions and Di-Higgs

- Coupling measurements simulated with full and parametric simulations → results are consistent and
- very close to the phenomenological studies (optimization still in progress)
 Di-Higgs production is particularly sensitive to trilinear Higgs self-
- coupling λ_3 (only the HH \rightarrow bbbb channel has been considered for now)
- Extrapolation to higher energies and luminosities → Muon Collider provides most precise results
- Possibility to access Higgs quartic self-coupling λ_4 (only pheno study for now), expectations: $\delta\lambda_4$ = 50% at E_{com} = 14 TeV with 20 ^{ab-1}

				M _{H1} [GeV]
The Muon Collider is	Experiment	Luminosity	COM Energy	$\delta \lambda_3$
definitely competitive	CLIC	5 ab ⁻¹	3 TeV	-7%,+11%
in the landscape of	ILC	8 ab ⁻¹	1 TeV	10%
future colliders	FCC-hh	30 ab ⁻¹	100 TeV	3%
	Muon Collider	2 ab ⁻¹	3 TeV	15%
	Muon Collider	10 ab ⁻¹	10 TeV	3.5%

20 ab⁻¹

90 ab⁻¹

0.14 Muon Collider

Simulation

0.12

0.08

0.06

0.04

0.02

Muon	Collider's	detectors	R&D - F	Di Meco

Muon Collider

Muon Collider

2.5%

1%

14 TeV

30 TeV

 \sqrt{s} =3TeV, L= 1 ab⁻¹

 $\mu^+ \mu^- \rightarrow HH X \rightarrow b \overline{b} b \overline{b} X$

 $^{+}\mu^{-}\rightarrow q_{_{B}}^{}q_{_{B}}^{}q_{_{B}}^{}q_{_{B}}^{}X$

BSM @ Muon Collider

Higgs boson couplings represent a guaranteed result, but the muon collider physics program is much broader.

• Search for a **dark photon** (DP) or an **ALP** produced in association with a photon at $\sqrt{s} = 3$ TeV (1 ab-1) and $\sqrt{s} = 10$ TeV (10 ab-1) in events with a **single monochromatic photon**.

 Search for wino and higgsino dark matter at √s = 3 TeV (1 ab-1) and √s = 10 TeV (10 ab-1) with the disappearing track signature.

95% CL limits on DP effective coupling to muons

expected sensitivity as a function of chargino m and τ

Muon Collider's detectors R&D - E. Di Meco

Beam Induced Background

- Muons decay → decay products interact with machine: intense fluxes of particles reach the detector:
 - high multiplicity of particles in the tracker (mainly in first layers)
 - diffuse background in calorimeters
- Innovative techniques and optimised algorithms are fundamental to mitigate the impact of BIB
- Tungsten nozzles mitigate radiation coming to the detector
- BIB is off-time wrt bunch crossing, algorithms and detectors tailored to exploit these features
- Still working on the MDI optimization for 10 TeV

Monternational Machine Detector Interface – 10 TeV

MAP's 1.5 TeV nozzle

new 10 TeV nozzle

New design needed for the 10 TeV MDI:

- Different nozzle design wrt previous studies
- @ 10 TeV: significant background from incoherent e⁺e⁻ pairs produced @ bunch crossing:
 - High energy e+/e- in the detector in time wrt bunch crossing
 - Confined to the inner regions thanks to the solenoidal B
 Field→ vertex detector and inner tracker layers

Collider energy	1.5 TeV	3 TeV	10 TeV (v 0.8)	10 TeV (EU24*)
Photons	7.1E+07	9.6E+07	1.6E+08	9.9E+07
Neutron	4.7E+07	5.8E+07	1.4E+08	1.1E+08
e+/e-	7.1E+05	9.3E+05	8.9E+05	1.2E+06
Ch. hadrons	1.7E+04	2.0E+04	5.2E+04	4.2E+04
Muons	3.1E+03	3.3E+03	3.3E+03	9.6E+03

10 TeV	BIB	e⁺e⁻ pairs
Photons	9.9E+07	4.0E+06
Neutron	1.1E+08	1.3E+05
e+/e-	1.2E+06	2.1E+05

Muon Collider's detectors R&D - E. Di Meco

6/26

MInternational New detector concept: MUSIC detector

- Main physics requirements → ability to reconstruct:
 - boosted low-pT physics objects from Standard Model processes;
 - central energetic physics objects from decays of possible new massive states;
 - less conventional experimental signatures: disappearing tracks, displaced leptons, displaced photons or jets, ...
 - multipurpose
- Constraints from the machine design: final focusing quadrupoles at ±6 m from the tracking interaction point
- Machine background conditions: the high levels of BIB will impose the technological choices, reconstructed algorithms ad the detector design

HCAL (Fe-Scintillator)

ECAL (CRILIN from LNF)

Superconductive solenoid (5T)

tight

Tracker requirements

 In the tracking system, the BIB produces a huge amount of spurious hits (most from very low-p electrons looping inside)

Key features of the tracking system to deal with the BIB:

- high granularity;
- precise timing;
- directional information;
- characteristics of the detector response (pulse shape and pixel cluster size).

Vertex detector:

- Silicon pixels 25 x 25 μ m²
- Spatial resolution 5μ m x 5μ m
- Time resolution 30 ps

Inner and outer tracker:

- macropixel 50 μ m x 1 mm.
- Spatial resolution 7μ m x 90 μ m.
- Time resolution 60 ps.

Ongoing R&D:

Silicon LGAD sensors for 4D tracking up to very high fluence

 $+5\sigma$

Higher hit occupancies than at HL-LHC detectors are expected, but the crossing rate at the muon collider is ~30-70 kHz vs 40 MHz at LHC.

ECAL requirements

BIB in the ECAL region (after nozzles and tracking system):

- Flux of 300 particles per cm² through the ECAL surface mainly γ (96%) and n (4%), average photon energy 1.7 MeV
- Time of arrival flatter throughout the bunch crossing → can exclude most of BIB with an acquisition window of ~240 ps
- Different hit longitudinal profile wrt signal
- Total lonising Dose: ~1 kGy/year
- **Neutron fluence**: $10^{14} \, n_{1\text{MeVneq}} / \text{cm}^2 / \text{year}$

BIB hits in the calorimeters

a MC ECAL should have:

- $\sigma_{\rm t} \sim 80 \, \rm ps$
- longitudinal segmentation
- fine granularity to distinguish BIB and signal
- radiation resistance
- $\sigma_{\rm E}/{\rm E} \sim 10\%/{\rm VE}$
- → The W-Si sampling calorimeter (CALICE-like) initially considered as the primary candidate, now CRILIN is the baseline choice.

Magnet

Key aspect: **position of the magnet**. Need to keep under control:

- Momentum resolution of tracks (especially at low)
- Good energy resolution for photons $(\frac{10\%}{\sqrt{E[GeV]}})$ and jets (~10%)

MUSIC solution:

- place the solenoid between the calorimeters
- close the B field with the iron in HCAL

Magnet thickness:

$$t_{\text{coil}}/X_0 = (R/\sigma_h X_0)(B^2/2\mu_0)$$

E	В	R	t(coil)
3 TeV	3.57 T	3821 mm	344 mm
10 TeV	4 T	2393 mm	270 mm
10 TeV	5 T	2393 mm	423 mm

 $t_{
m coil}$ thickness of the coil R radius of the coil B the magnetic field σ_h hoop stress of the coil

HCAL requirements

BIB in hadronic calorimeter:

- Mostly photons (96%) and neutrons (4%)
- Large asynchronous component
- Occupancy: 0.06 hits / cm² ~10 times lower than ECAL

Detector requirements:

- 3-4 % jet energy resolution for hadronic Z decays
- particle flow reconstruction
- for HCAL
- High granularity (< 3cm²)
- Single layer timing 100 ps few ns

Ongoing R&D:

- HCAL based on Micro-Pattern Gaseous Detectors
- FIS-2 project from LNF: CRILIN and innovative hadronic calorimeter→ MITICO (Multl TeV Colliders CalOrimeter)

Muon system requirements

In the muon system, significant BIB effects only in the endcap regions close to the beamline:

- required good spatial resolution and possibly sub-ns time resolution
- Under investigation the possibility of detecting the forward-scattered muons associated with the ZZ-fusion production process:
- exploit the specific ZZ-fusion signature;
- possibly help with the measurement.

Ongoing R&D:

Muon detector based on PicoSec Micromegas:

The Crilin calorimeter

Crilin is a **semi-homogeneous** electromagnetic calorimeter made of **crystal matrices** interspaced and readout by **SiPMs.** Each crystal is independently read by 2 channels, each consisting of 2 SiPMs in series.

Key Features:

Excellent timing: (<100 ps) to reject the BIB out- of-time hits and for good pileup capability.

Longitudinal segmentation: allows to recognize fake showers from the BIB.

Fine granularity: reduced hit density in a single cell and distinguish the BIB hits from the signal.

Good resistance to radiation: good reliability during the experiment

Oct 18 2024

Crystal choice:

High-density crystal: selected to balance the need for increased layer numbers with space constraints

Speed response: Cherenkov/fast crystals, ensuring accurate and timely particle detection

→ PbF2, PbWO₄-UF, LYSO...

S. Ceravolo et al 2022 JINST 17 P09033

Muon Collider's detectors R&D - E. Di Meco

Differentiation:

Semi-homogeneous: strategically between homogeneous and sampling calorimeters → able to exploit the strengths of both kinds

Flexibility: able to modulate energy deposition for each cell and adjust crystal size for tailored solutions

Compactness: Unlike segmented or high granularity calorimeters CRILIN can optimize energy detection while staying compact

Simulated performances

- The ECAL barrel with Crilin technology has been implemented in the Muon Collider simulation framework
 - > 5 layers of 45 mm length, 10 X 10 mm² cell area \rightarrow 21.5 X_0
 - ➤ In each cell: 40 mm PbF₂ + 3 mm SiPM + 1 mm electronics + 1 mm air
- Design optimized for BIB mitigation: having thicker layers, the BIB energy is integrated in large volumes →
 reduced statistical fluctuations of the average energy
- 5 layers wrt to 40 layers of the W-Si calorimeter → factor 10 less in cost (6 vs 64 Mchannels)

w/out BIB

$$\frac{\sigma_E}{E} \sim \frac{4\%}{\sqrt{E[GeV]}} \oplus 0.2\%$$

w/BIB

$$\frac{\sigma_E}{E} \sim \frac{15\%}{\sqrt{E[GeV]}} \oplus 0.8\%$$

R&D status

Prototype versions

- Proto-0 (2 crystals → 4 channels)
- Proto-1 (3x3 crystals x 2 layers → 36 channels)

Front-end electronics

- Design completed
- Production and QC completed

Radiation hardness campaigns

Beam test campaigns

- Proto-0 at CERN H2 (August 2022) <u>C. Cantone</u> et al. 2023 Front. Phys. 11:1223183
- Proto-1 at LNF-BTF (July 2023-April 2024) <u>C.</u>
 <u>Cantone et al. 2024 doi:10.1109/TNS.2024.3364771</u>
- Proto-1 at and CERN (August 2023)

Proto-1: Mechanics and Electronics

Mechanics:

- Two stackable and interchangeable submodules assembled by bolting, each composed of 3x3 crystals+36 SiPMs (2 channel per crystal)
- light-tight case which also embeds the front-end electronic boards and the heat exchanger needed to cool down the SiPMs.

Electronics:

- SiPMs board: custom SiPM array board 36x10 µm Hamamatsu SMD SiPMs
- Mezzanine board: 18x readout channels → amplification, shaping and individual bias regulation, slow control routines

Beam test @ CERN

H2-SPS-CERN, August 2023

SETUP SCHEME WITH DISTANCES

- 15.48 m 0.12 m 0.71 m 0.03 m 0.09 m 0.15 m 0.30 m Super Cindy
- Electron beam from 40 GeV up to 150 GeV
- Beam reconstructed with 2 silicon strip telescopes
- Data acquisition with 2 CAEN V1742
 (32 ch each) modified @ 2 Vpp
- 5 Gs/s sampling rate

Timing performances @ SPS-H2

- Time Resolution of O(20 ps) both in the series and in the parallel layers using the SiPMs time difference of the central crystals
- Excellent results using most energetic crystal of different layers. Time resolution dominated by the 2 boards synchronisation jitter O(32ps)

Beam test @ BTF

19/26

BTF, April 2024

- Study of the LY loss of one layer of Proto-1 after Gamma ray irradiation
- Beam: 450 MeV electrons with multiplicity 1
- Beam centered on a different crystal at each run

Beam test @ BTF: crystals

- Crystals tested with two different wrapping, Teflon and Mylar, up to 80 kGy
- LY loss evaluated through variation in charge and number of photo-electrons

Beam test @ BTF: considerations

- Considerable variability in crystals' response to radiation, despite SICCAS claiming use of high-purity (>99.9%) PbF₂ powder for crystal growth
- Crystals evident loss of transparency
- Transparency loss was uniform length-wise in the crystals
- Teflon was damaged and brittle
- SiPM dark counts increases significantly with the absorbed dose
- New tests planned to evaluate SiPMs PDE loss and optical grease degradation

Geant4 simulation of the new prototype

- Initial proposal 11x11 x6 layer (crystals $10x10x40 \text{ mm}^2 \text{ each}) \rightarrow 2.5 \text{ R}_M 26 \text{ X}_0$
- Crystals wrapped in 150 um Mylar foils and placed a 150 um aluminum honeycomb
- 2 SiPMs 3x3 mm² per cystal, 2 mm thick, per layer
- 2 mm thck PcB, per layer

Photostatistics and noise measured during beam tests: Poisson 0.3 p.e./MeV, Gauss 5 MeV

Number of crystals optimization

By setting a threshold similar to that expected for the Muon Collider (i.e. 40 MeV) per crystal, we
optimized the number of crystals, with the goal of minimizing the energy resolution loss → optimization
performed for an electron beam with 100 GeV of energy.

Number of layers optimization

The average number of crystals triggered above the threshold leads to a 7x7 configuration for layers 2, 3, 4, and 5

The sixth layer is crucial for maximizing energy resolution → longitudinal leakage creates a much larger energy fluctuation compared to lateral leakage (for the same amount of leakage).

The average number of crystals triggered above the threshold leads us to a 5x5 configuration for layers 1 and 6.

Energy resolution and linearity

- Energy Resolution and Linearity as a function of E for the reduced matrix:
- 7x7 in layers 2, 3, 4, and 5, and 5x5 in layers 1 and 6 \rightarrow ~250 crystals in total.
- $\sigma_E/E \sim 6\%/\sqrt{E}$ satisfies the Muon Collider requirements!
- stochastic term comparable to the one expected from photo-statistics (5.8%)

Conclusions

- A Muon Collider is a valid and challenging opportunity as next collider
- Many studies are yet to be improved but the physics program stands really strong, wide and competitive
- The effects of beam-induced background in the detector have been thoroughly studied with a detailed detector simulation and mitigation measures are in place to keep them under control.
- Full-simulation studies at 3 TeV are concluded and now 10 TeV studies are close to be finalized.
- The full-simulation studies point the way for the detector R&D (some R&D's already well advanced).
- The goals for the European Strategy update are a detector concept for 10 TeV collisions and the muon collider reach for representative physics cases.

Backup slides

Muon Collider parameters

Example as discussion basis numbers will change

=3 Te

τ = 2.2×10-6 s

=3 TeV	=10 TeV			
Beam parameters				
1.5 TeV	5 TeV			
	1			
2.2×10 ¹²	1.8×10 ¹²			
25	μm			
Repetition rate (inj. rate) 5 Hz				
4.5 km	10 km			
15.0 μs 33.4 μs				
1 ab-1	10 ab ⁻¹			
2 x 10 ³⁴ cm ⁻² s ⁻¹ / 1 x 10 ³⁴ cm ⁻² s ⁻¹	1 x 10 ³⁵ cm ⁻² s ⁻¹ / 2 x 10 ³⁵ cm ⁻² s ⁻¹			
	1.5 TeV 2.2 × 10 ¹² 25 5 4.5 km 15.0 μs 1 ab ⁻¹ 2 x 10 ³⁴ cm ⁻² s ⁻¹			

Muon decay	=3 TeV	=10 TeV
Mean muon lifetime in lab system (γτ)	0.031 s	0.104 s
Luminosity lifetime	1039 turns	1558 turns

See also parameter doc: https://cernbox.cern.ch/s/NraNbczzBSXctQ9

Radiation enviroment

FLUKA simulation for the BIB at \sqrt{s} =1.5 TeV

- Neutron fluence $\sim \! 10^{14} \rm n_{\rm 1MeVeq}/cm^2 year$ on ECAL.
- TID ~ 1 kGy/year on ECAL.

Crystal radiation hardness

Neutron fluence: $\sim 10^{14} n_{1MeVeq}/cm^2$ year on ECAL TID: ~ 1 kGy/ year on ECAL.

Radiation hardness of two PbF₂ and PbWO₄-UF crystals (10x10x40 mm³) checked for TID (up to 100 Mrad @ Calliope, Enea Casaccia) and neutrons (14 MeV neutrons from Frascati Neutron Generator, Enea Frascati, up to 10¹³ n/cm²)

Source is 20 cm apart

- after a TID > 350 kGy no significant decrease in transmittance observed.
- Transmittance after neutron irradiation showed no deterioration

• For PbWO₄-UF:

after a TID > 2 MGy no significant decrease in transmittance observed.

Crystal	PbF ₂	PWO-UF
Density [g/cm ³]	7.77	8.27
Radiation length [cm]	0.93	0.89
Molière radius [cm]	2.2	2.0
Decay constant [ns]	-	0.64
Refractive index at 450 nm	1.8	2.2
Manufacturer	SICCAS	Crytur

PWO-UF (ultra-fast):

Dominant emission with τ < 0.7 ns M. <u>Korzhik</u> et al., NIMA 1034 (2022) 166781

SiPMs radiation hardness

Neutron fluence: $\sim 10^{14} n_{1MeVeg}/cm^2$ year on ECAL TID: ~ 1 kGy/ year on ECAL.

Neutrons irradiation: 14 MeV neutrons with a total fluence of 10^{14} n/cm² for 80 hours on a series of two SiPMs (10 and 15 μ m pixel-size).

Extrapolated from I-V curves at 3 different temperatures:

- Currents at different operational voltages.
- Breakdown voltages;

For the expected radiation level, the best SiPMs choice are the 10 μ m ones for their minor dark current contribution.

15 μ m pixel-size

T [°C]	$V_{ m br} [V]$	$I(V_{ m br}{+}4V)~[{ m mA}]$	$I(V_{ m br}+6V)$ [mA]	$I(V_{ m br}+8V)$ [mA]
-10 ± 1	75.29 ± 0.01	12.56 ± 0.01	30.45 ± 0.01	46.76 ± 0.01
-5 ± 1	75.81 ± 0.01	14.89 ± 0.01	32.12 ± 0.01	46.77 ± 0.01
0 ± 1	76.27 ± 0.01	17.38 ± 0.01	33.93 ± 0.01	47.47 ± 0.01

10 μ m pixel-size

T [°C]	$ m V_{br} \ [V]$	$I(V_{ m br}{+}4V)$ [mA]	$I(V_{ m br}+6V)$ [mA]	$I(V_{ m br}+8V)$ [mA]
-10 ± 1	76.76 ± 0.01	1.84 ± 0.01	6.82 ± 0.01	29.91 ± 0.01
-5 ± 1	77.23 ± 0.01	2.53 ± 0.01	9.66 ± 0.01	37.51 ± 0.01
0 ± 1	77.49 ± 0.01	2.99 ± 0.01	11.59 ± 0.01	38.48 ± 0.01

Pre 10kGy

Post 10kGy

Beam test @ CERN: Configuration

1st layer: SiPMs series

2nd layer: SiPMs parallel

- Two different connection in the two layers: series and parallel
- Low pass filtering (Bessel 2nd order) cutoff_parallel ~ 2* cutoff_series.
- Cut-off frequency based on two parameters: baseline RMS and risetime (10-90%)
- Wave quality flag based on baseline RMS, peak, and risetime to discard bad waves
- Processing cuts: peak > 2 mV

Syncronisation pulses reconstruction:

- O(10 ps) ch-to-ch in the same chip
- O(30 ps) board-to-board jitter

Beam test @ BTF: Teflon wrapping

After 80 kGy (8 Mrad) irradiation

- Teflon was damaged and brittle
- Crystals evident loss of transparency

Charge distribution of PbF₂ pre and post irradiation

Beam test @ BTF: Mylar wrapping

- Test repeated with a Mylar wrapping
- No annealing after 48h and 60h observed
- New test planned to evaluate SiPMs
 PDE loss and optical grease degradation

Charge distribution of PbF₂ pre, after 10 kGy and after 80 kGy irradiation

