

A novel design of a cyclotron based accelerator system for multi-ion therapy

Marco Schippers

Andreas Adelmann, Werner Joho, Marco Negrazus, Mike Seidel, Mette Stam (PSI) Heinrich Homeyer (Hahn Meitner Inst.)

PAUL SCHERRER INSTITUT

Demand for "heavy" ion therapy

Present facilities: (Berkeley) Himac, Chiba HIBMC, Hyogo (GSI)

Difference 1 with protons: Dose distribution

depth-dose distribution

Currently: synchrotron facilities

Heidelberg HIT facility

Coming up:

HIT, Japan, Pavia, Kiel, Marburg,....

<u>Vendors are offering</u> (often in collaboration with laboratories):

- synchrotron (Siemens, PIMS, NIRS)
- cyclotron 250, 300, 400 MeV/nucl (IBA, Catania, JINR)

Scanning \rightarrow best dose distribution

Method currently used at PSI (p), GSI and Houston (p): Spot scanning technique

Beam size 7 mm FWHM 5 mm steps

10'000 spots/liter (21 x 21 x 21) Dose painted only once

~1 Gy / liter/minute

The problem in dynamical treatments:

Organ motion

Danger to underdose and overdose

Limitation of spot scanning (step & shoot) - too slow for moving targets Solutions: fast scanning / gating / tracking

Fast scan mode: continuous

Video: David Meer, Eros Pedroni

ScanDemo_5.wmv

Typical cyclotron facility

Observations:

- Protons are "proven work tools"(also covered by insurances)
- Carbon is interesting
- Carbon offers research possibilities
- One prefers to start with protons

Typical cyclotron facility

Two steps: injector and booster AND:

injector also provides He and (limited) carbon beams

	Beams from injector cyclotron: 250 MeV/nucl. (4.86 Tm)			From Booster (6. 83 Tm)
	Proton (H ₂ ⁺ ions)	Helium 2+ (α)	Carbon 6+	Carbon 6+ 450 MeV/n
Range in water (cm)	38.3	38.3	12.7	33.3

A possible injection cyclotron:

Figure 3: Layout of the cyclotron with overdrawn the extraction trajectories by E.D. and by stripper. The E.D. and the M.C. positions are also shown.

LNS CATANIA PROJECT FOR THERAPY AND RADIOISOTOPE PRODUCTION

L.Calabretta, G. Cuttone, M. Re, D. Rifuggiato, LNS-INFN, Catania, Italy M.Maggiore, University of Catania, LNS-INFN, Italy

Cyclotron conference, Tokyo 2004

novel idea: sep. sector cyclotron as **booster**

Separate locations of injector and booster !

system layout

layout compared to a synchrotron

Magnet types	H-magnets, superconducting coils
Magnetic field	4 Tesla

• Field energy 20-25 MJ \rightarrow quench protection?

• Field shaping: iron and coil contributions

Other problems with 4 T design

	3T	4T	3-4	T
Weight (tons)	400	500	550	
Size ∅ (m)	8.5	12	12	

magnet designs being studied

4 T design:

- + relatively short
- problems with strong field

3 T design:

- + magnet less problematic
- long \rightarrow less space in valley
- edge at concave side too sharp

gradient $3 \rightarrow 4$ T design:

- + magnet less problematic
- + relatively short
- + coil can add to gradient
- + rotate magnet => incr. v_z

Marco Schippers, HIAT09 Venice, June 8-12, 2009

an option:

2.5→3.2 T

Design issues: RF system

RF frequency	92 MHz; 3 single gap cavities, 600 kV
ΔE per turn	~ 0.9 MeV/nucl at extraction

"Scaled 150 MHz test cavity": Height 1.0 m \rightarrow 1.5 m

Advantages of single gap :

- high ΔE per turn: 3x600x½ keV
- less space azimuthally
- smallest vacuum volume

=> high injection and extraction efficiencies are expected

Tune sensitivity calculations

 $V_{r,z}$

Betatron frequencies $v_{r,z}$ Calculated from Phase advance μ in 1 sector:

Soft edge fringe field

 $\frac{n_{\rm sec}.\mu_{r,z}}{2\pi}$

Tune diagrams of booster options

3T homog. field, h=12

Spiral max= 35°

3T homog. field, h=12 Spiral max= 35°

4T homog. field, h=12

Spiral max= 15°

vr-vz=1

Tune diagrams of booster options

3T homog. field, h=12 Spiral max= 35°

4T homog. field, h=12

Spiral max= 15°

3-4T linear field, h=12 No spiral

⇒ $v_r \approx 1.5$ for injection and extraction: 90° phase adv/sector ⇒ robust design of beam dynamics

3-4 T, 3 cavities (not sym.)

4 cavities

- 2 phase approach possible (first protons)
- in first phase already α and (up to 12.5 cm) Carbon
- Booster should be simpler than single cyclotron
- Use of proven well established techniques:
 - Injector: existing similar SC cyclotrons (ACCEL/PSI, Groningen, Catania, East Lansing)
 - Booster: extremely reliable ring cyclotrons at PSI (injector 2 + ring cyclotron for neutron source)
- High fields in magnets: **stable and reproducible**
- Low power of SC magnets

- Beam dynamics in Booster "relaxed" and robust:
 - no problems with resonances
 - many degrees of freedom to design
 - ample vertical focusing
 - large orbit separation => high extraction efficiency

> 95% availability

- (parameters of) Injector Cyclotron
- optimize field and sector shape
- magnet design: field with gradient
 - minimize iron
 - forces
- injection and extraction
 cost estimate
 partner (industry and/or lab)

The long road still to go.....

Difference 1 with protons: Dose distribution

depth-dose distribution

Matlab program that calculates tunes from basic parameters => get a **quick impression** of the design and **sensitivities**

Tunes calculated from **transport matrix** M_{sec} of 1 sector (A \rightarrow B):

$$M_{\text{sec}} = M_{drift} * M_{exit} * M_{bend} * M_{entrance}$$

Phase advance μ in 1 sector:

$$\mu = \arccos(\frac{1}{2}trace(M_{sec}))$$

$$v_{r,z} = \frac{n_{\text{sec}} \cdot \mu_{r,z}}{2\pi}$$