

# HIE-ISOLDE Linac: Status of the R&D activities

M. Pasini, CERN BE-RF and Instituut voor Kern- en Stralingsfysica, K.U.Leuven On behalf of the HIE-ISOLDE team

### Overview

- + The ISOLDE Facility- status
- + HIE-ISOLDE project
- + R&D activities
- + Summary



# **REX-ISOLDE** Post accelerator



# Accelerated elements (Talk of F. Wenander Mo12)



#### Users next requirements:

- + Higher energy for the post-accelerated beam
- + More beams (Intensity wise and different species)
- + Better beams (High purity beams, low emittances, more flexibility in the beam parameters)

# **HIE-ISOLDE** activity

- REX energy upgrade and increase of current capacity
- Energy upgrade in 3 stages: 5.5 MeV and 8 MeV/u or higher and lower energy capacity
- REX trap and charge breeder upgrade
- ISOLDE proton driver beam intensity upgrade strongly linked to PS Booster improvements including linac4
  - Faster cycling of the booster
  - New target stations for ISOLDE
  - New targets
  - New target handling system
- ISOLDE radioactive ion beam quality more than half already financed through the ISOLDE collaboration
  - Smaller longitudinal and transverse emittance
  - Higher charge state for selected users
  - Better mass resolution
  - Target and ion source development e.g. RILIS

# HIE-ISOLDE 1 project

 Energy upgrade up to 8 MeV/u with a superconducting linac based on Nb sputtered QWRs and the design study of the intensity upgrade

**R&D** activity funded

# HIE-ISOLDE 2 project

• Higher Linac energies and Intensity upgrade: targets and charge breeder

# R&D activities for the linac (started in 2008)

- + Beam dynamics studies
- High beta cavity prototype development (Nb bias sputtering technique)
  - + Tuners, coupler, RF system
- + Cryomodule design
- + Solenoid studies
- + Infrastructure and integration

# HIE-ISOLDE SC-linac

- SC-linac between 1.2 and 8 MeV/u (possibility to further extend to 10 MeV/u).
- + Energy fully variable; energy spread and bunch length are tunable. Average synchronous phase  $\phi_s$ = -20 deg
- + 2.5<A/q<4.5 limited by the room temperature cavity
- + 16.02 m length (without matching section)
- No ad-hoc longitudinal matching section (included in the lattice)

# **HIE-ISOLDE LINAC - layout**



# **Final Beam Energies**



## LINAC lattice



# **Beam Dynamics**



### Beam dynamics choices

#### + Solenoid focusing

- + Shorter inter cryomodule distance → increased longitudinal acceptance
- Minimum number of tuning knobs
- + High tolerance to mismatch beam.
- + Transverse Phase advance for zero space charge set to 90 deg.→ Avoid parametric resonance and maintain the beam emittance.
- + Longitudinal matching within the lattice.

# QWR cavities (Nb sputtered)

Low  $\beta$ 



| High p  |   |
|---------|---|
|         |   |
| AR      |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
| S -TE O |   |
|         | 0 |
| -       | ł |

| Table 1: Cavity design parameters                         |                 |               |  |  |
|-----------------------------------------------------------|-----------------|---------------|--|--|
| Cavity                                                    | Low $\beta$     | high $eta$    |  |  |
| No. of Cells                                              | 2               | 2             |  |  |
| f (MHz)                                                   | 101.28          | 101.28        |  |  |
| $\beta_0$ (%)                                             | 6.3             | 10.3          |  |  |
| Design gradient $E_{acc}(MV/m)$                           | 6               | 6             |  |  |
| Active length (mm)                                        | 195             | 300           |  |  |
| Inner conductor diameter (mm)                             | 50              | 90            |  |  |
| Mechanical length (mm)                                    | 215             | 320           |  |  |
| Gap length (mm)                                           | 50              | 85            |  |  |
| Beam aperture diameter (mm)                               | 20              | 20            |  |  |
| $U/E_{\rm acc}^2 ({\rm mJ/(MV/m)^2}$                      | 73              | 207           |  |  |
| $E_{\rm pk}/E_{\rm acc}$                                  | 5.4             | 5.6           |  |  |
| $\hat{H_{pk}}/E_{acc}$ (Oe/MV/m)                          | 80              | 100.7         |  |  |
| $R_{\rm sh}/Q(\Omega)$                                    | 564             | 548           |  |  |
| $\Gamma = R_{\mathbf{S}} \cdot Q_0 \left( \Omega \right)$ | 23              | 30.6          |  |  |
| $Q_0$ for 6MV/m at 7W                                     | $3.2\cdot 10^8$ | $5\cdot 10^8$ |  |  |
| TTF max                                                   | 0.85            | 0.9           |  |  |
| No. of cavities                                           | 12              | 20            |  |  |

#### Manufacturing sequence

2

6

9

- Rolling of half tubes, longitudinal welding, rough machining
- Machining of end piece
- + E-beam welding
- + Fine machining of inner surface
- \*Bossage" and machining of beam ports
- Manufacturing of baseplate of inner conductor

 Manufacturing of central tube

9

8

- Manufacturing of head
- E-beam welding of the 3 parts of inner conductor
- Fine machining of inner conductor
- + Drilling of beam line
- + Final long-distance e-beam welding
- + E-beam welding of top flange ensemble

### Cavity fabrication



#### Surface treatments ready





# Sputtering chamber





#### Assembly sequence for clean room operations



# Tuning plate (in construction)

Zero backlash concept hydroformed CuBe o.33mm thick diaphragm



# **RF** Coupler



# Main Parameters of the high $\beta$ cryomodule

| Parameter                              | Value                                     |  |  |
|----------------------------------------|-------------------------------------------|--|--|
| No. cavities                           | 5                                         |  |  |
| Mechanical length of cavity            | 320 mm                                    |  |  |
| Beam aperture diameter                 | 20 mm                                     |  |  |
| No. of SC solenoids                    | 1                                         |  |  |
| Solenoid max field, current            | 9 T, 600 A                                |  |  |
| Vacuum vessel (approximate dimensions) | Length: 2.5 m; width: 1 m;<br>height: 2 m |  |  |
| Cavity/solenoid operating              | 4.5 K                                     |  |  |
| temperature                            |                                           |  |  |
| Helium vessel volume                   | 150 l                                     |  |  |
| (preliminary)                          |                                           |  |  |
| Thermal shield temperature             | 50 K (gaseous helium)                     |  |  |

## Common vacuum



# Evaluation points (1/2)

- + Heat loads
- + Risk of cavity pollution
- + On-site cryomod. intervention
- + Size of clean room infrastructure
- + Disassembly cav. for maintenance
- + Design/construction/ assembly complexity
- + Cryostat cleanliness requirements
- + Alignment at assembly

# Evaluation point (2/2)

- + Longitudinal space requirements
- + Capital cost
- + Development
- + Learning curve and construction time

### Some more specifications

- + Alignment adjusting position of the solenoid from outside
- Vacuum no worm leaks are tolerated, cold leaks (He gas) can be tolerated up to 10e-7 mbar
- Assembly should be compliant with CERN infrastructure (important for maintenance)

# Cryomodule pre-study concept







#### Ligne Cryomodules



# Solenoid R&D – Parameters table

| Magnetic length              | 0.16 | m     |
|------------------------------|------|-------|
| ∫Bdz                         | >1.8 | Tm    |
| B residual at 0.25m from mid | <0.2 | Gauss |
| Max dimensions               | <0.4 | m     |
| Operating temperature        | 4.2  | К     |

# Magnetic design



Nb<sub>3</sub>Sn

# Solenoid R&D



# **Buildings and infrastructures**











# Summary

- + HIE ISOLDE R&D activity is in good health and ongoing
- + Test of the first cavity are expected in August (t.b.c.)
- The construction phase is depending now on the CERN management; hopefully a decision will be taken at the council meeting in September. If it is positivite we can foresee to have installed and commissioned the first 2 cryomodules by 2013.

# People

+ HIE-ISOLDE design group

- + ISOLDE physics and operation group
- + LNL-INFN and TRIUMF
- + Cockcroft Institute, Liverpool and Manchester University

# Thanks for your attention!