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UMo/Al nuclear fuel development: presentation

Research reactors

• Material Testing Reactors

• Neutron sources

OSIRIS-Saclay

International treaty for non-proliferation:
235U enrichment reduction down to 20% for 
nuclear fuel materials.

Research reactors:
UAlx/Al or U3Si2/Al nuclear fuels enriched up to 
93% in 235U

For keeping high performances without designing 
new cores ⇔ new fuels have to be designed
235U enrichment reduction must be compensated 
by an increase of the U density inside the fuel.

Density in U : 
UAlx : 4.3 g/cm3

U3Si2 : 11g/cm3

UMo7 :  15g/cm3

Choice: UMo/Al metallic nuclear fuels
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UMo/Al nuclear fuel development: presentation

Research reactorsInternational treaty for non-proliferation:
235U enrichment reduction down to 20% for 
nuclear fuel materials.

Research reactors:
UAlx/Al or U3Si2/Al nuclear fuels enriched up to 
93% in 235U

For keeping high performances without designing 
new cores ⇔ new fuels have to be designed
235U enrichment reduction must be compensated 
by an increase of the U density inside the fuel.

Density in U : 
UAlx : 4.3 g/cm3

U3Si2 : 11g/cm3

UMo7 :  15g/cm3

Choice: UMo/Al metallic nuclear fuels

ILL 

RJH 

FRMII 

BR2 

Research reactors in Europe 
(west) interested in UMo/Al for 

their conversion
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UMo/Al Nuclear fuel plate description
30-60cm

Monolithic
Ground powderAtomized powder

Two concepts depending on the required 235U fission density (= 235U density)

Cross sections 

1.3 mm 0.6 mm
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Nuclear fuel development: usual strategyNuclear fuel development: usual strategy

Post irradiation examinations (PIE) in hot labs 
(ex: LECA at Cadarache)

Test in dedicated nuclear reactors 
(Material Testing Reactors-MTR)Design of new nuclear fuels

Microstructure evolution …. Swelling ?

Destructive examinations Non- Destructive examinations 

With increasing linear power

If not 
satisfactory
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Irradiation = Fission  
Radionuclides produced by 235U fission with thermal neutrons

KrKr
XeXe

AgAgBrBr

II

CdCd

Y
La

CsCsMoMo
TcTc
RuRu

Fuel plate behavior under in-pile irradiation

Fission products (FP): 
• are emitted with a high energy; their energy loss in the fuel material will cause defects

Fission ⇔ defects’ production
• are new radioelements (solid or gaseous) in the nuclear fuel material

Fission ⇔ production of new radioelements
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235U fission: about 200 MeV
(80% taken by the FP)
Penetration depth of Iodine (127I of 80 MeV)
• in UMo: 5 µm,
• In Al: 15 µm.

Irradiation temperature: often below 200°C
Irradiation induced diffusion: 
• Growth of an amorphous interaction layer at UMo/Al interfaces

Fission ⇔ defects’ production

FUTURE Irradiation 
Van den Berghe et al., Journal of Nuclear Materials (2008)IRIS-TUM
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Fission ⇔ defects’ production

Micrograph taken from the RERTR 05 experiment
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Fission ⇔ production of new radioelements
Gaseous fission products (Xe, Kr, …):

• Very low solubility limit into (formation of bubbles):

UMo UMo/Al interaction layer

Ground powder

Atomized powder

• Good retention properties of the UMo phase 
for gaseous FP: low fuel swelling

• Poor retention properties of the UMo/Al 
amorphous phase:

• Large porosities may interconnect and cause 
the breakaway of the fuel element (IRIS2)
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Cross section of a fresh fuel plate

Cross section of an irradiated fuel plate: breakaway 

Fuel plate behaviour under in-pile irradiation
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Technological solutions to test/improve

Al Matrix

γ-UMo7

γ-UMo7

γ-UMo7

To limit the thickness and/or control the composition of the IL:

1. Matrix choice: limited adjunction of Si, Ti, …
2. Particles composition: UMo7, UMo10, adjunctions (Nb, Zr, …)
3. Anti-diffusion barrier: particle coating (Si, UO2, …)

γ-UMo7
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Nuclear fuel development: need for outNuclear fuel development: need for out--ofof--pile testspile tests

Post irradiation examinations (PIE) in hot labs (ex: LECA at Cadarache)

Test in dedicated nuclear reactors 
(Material Testing Reactors-MTR)

Design of new nuclear fuels

Destructive examinations Non- Destructive examinations 

In-pile tests: 
- Time consuming and expensive experiments,
- can be associated with out-of-pile activities

If not 
satisfactory
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Demonstration of the interest of heavy ion irradiation for obtaining an 
UMo/Al interaction layer in 2005 (Wieschalla et al., JNM, 2006)

Heavy ion irradiation conditions: 

- projectile:127I with 80 MeV energy: typical 235U fission product,
- irradiation angle: 30°

Simulation by out-of-pile methods
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In 2005, start of a collaboration between the MLL, CEA and FRMII for:
- methodological work on heavy ion irradiation for improving

• its reproducibility

• our understanding of the influence of each experimental 
parameter (dose, flux, irradiation angle, …)

• its “representativity” compared to in-pile neutron irradiation

- technological solution discrimination studies                   
(H. Palancher et al., RRFM2006; R. Jungwirth (FRMII, Ph.D work))

Simulation by out-of-pile methods

AMS
18%

Irradiation of cells
14%

ERDA
19%

Nuclear Physics
21%

Detector Tests
7%

Training of students
7%

Irradiation of U-
Samples

14%
Beam-time distribution 

at MLL in 2008
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Heavy ion irradiation on UMo7/Al: 2008-2009 campaigns
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Heavy ion irradiation on UMo7/Al: 2008-2009 campaigns

Many instrumental improvements have enabled:

- Automation

- precise sample positioning in the beam,

- precise irradiation angle choice.

MLL 
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A European collaboration

ESRF 

Cadarache 

MLL 
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Surface examinations

Optical 

microscopy

Optical 

microscopy

Whatever the irradiation conditions: an UMo/Al interaction layer has been observed

SEM 

40µm

4 1

2

3

7
5

6 8

9

10

4
1

2

3

7
5
6 8

9

1040µm

4 1

2

3

7
5

6 8

9

1040µm

Before irradiation

After irradiation



HIAT 2009, 12 June 2009, Venezia, Italy
27

Transversal cross-sections examinations

The in-depth occurrence of the IL is in excellent agreement with the I 
penetration depth into the materials

127I  mean penetration depth (µm)

UMo 5,0 ± 0,7

Al 12,7 ± 0,6

SRIM 
calculations

127I beam
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Transversal cross-sections examinations

127I beam
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An IL has grown at each UMo/Al interface located at a depth compatible with I 
penetration depth. Both cases may be found: 

-UMo/Al interface,

-Al/UMo interface.
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µ-XRD studies of the IL composition

Weight fractions (%)

U(α) UO2 γ-UMo Al UAl3
Irradiated area 0 7.1 

(±0.3)
33.6 

(±0.8)
22 

(±1.0)
44.2 

(±1.0)

Example of µ-XRD diagram collected on the 
heavy ion irradiated zone of the fuel plates (data 
measured on the ID22 beamline) 

Conclusions of the µ-XRD study are consistent with previous studies (H.Palancher et al., JNM, 2009; 
RRFM2006): 

•The main component (UAl3) of the IL is crystallised: its structure is however slightly 
modified/stressed (a cell parameter of about 4.23 Å is observed instead of 4.266Å)

•No information on the location of the Mo in the IL can be deduced.
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UMo phases behavior under heavy ion irradiation
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•Temperature influence on the stability of γ(U,Mo):

Destabilisation of the γ(U,Mo) phase for creating U(α) and U2Mo or 
γ(U,Mo) 

• Stability of γ(U,Mo) under in-pile irradiation at low temperature:

• XRD on IRIS1 fuel plate 

• Studies from the 50’s (see for example: M. L. Bleiberg, J. Nucl. Mater 2 (1959) 182 or S. T. 
Konobeevskii et al., J. Atomic Energy 1958 4- 1 p33-45)

Stabilisation of the γ(U,Mo) phase: decrease of the U(α) weight fraction
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UMo phases behavior under heavy ion irradiation : UMo8/Al mini- plates
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Stabilisation of the γ(U,Mo) phase: decrease of the U(α) weight fraction
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• A set of 11 samples were irradiated in the same condition

• Most promising solutions: 
– Si addition to the Al matrix confirmed by IRIS3, IRIS-TUM, RERTR06 in-pile irradiation.
– UO2 coating which currently tested in the IRIS4 experiment. 

Interaction layer characteristicsDispersed fuel
Presence Thickness

YES ≈ 7 µm

YES heterogeneous

≈ 5,7 µmYES

NO

NO

NO

Very limited 
interaction

NO

Limited interaction

UMo7 at / Al

UMo7 at / Al, Si 

UMo10 at / Al 

UMo10 at / Al, Si

UMo7 ox (µm)/Al 

UMo7 ox (µm)/Al, Si

UMo7 ox (nm)/Al 

UMo7 ox (nm)/Al, Si

UMo7 /Al, Ti

Oxide solution

Methodology : 
reference samples

Doped Al Matrices

Selection of the most interesting nuclear fuels
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Conclusions

“Representativity” of Heavy ion irradiation versus in-pile neutron 
irradiation

– ILs obtained with heavy ion irradiation are not due to a temperature effect
– Heavy ion irradiations induce also the stabilization of the U(γ) phase as 

observed under low temperature in-pile irradiation,
– It has not been possible to obtain amorphous IL up to now: modifications 

of the set-up are undergoing.
– Doses must be increased to be more representative of the burn-up 

obtained in-pile

This method has been applied to a large extent to select best 
candidates to irradiate in-pile

Publications related to this work

H. Palancher, N. Wieschalla et al., J. of Nucl..Mater. 385, 449-455, 2009.
H. Palancher, N. Wieschalla et al., RRFM Sofia, 2006.
S. Dubois, H. Palancher et al., RERTR South-Africa, 2006
E. Welcomme, H. Palancher, R. Jungwirth et al., RRFM Vienna, 2009.
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Thank you for your attention !Thank you for your attention !
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