11th International Conference on HEAVY ION ACCELERATOR TECHNOLOGY

RCNP cyclotron facility

K. Hatanaka

hatanaka@rcnp.osaka-u.ac.jp

Research Center for Nuclear Physics Osaka University

> HIAT09 TU9 June 9, 2009 Venice (Italy)

Outline

- 1. Overview of the RCNP facility
- 2. FLAT-TOP acceleration by the AVF cyclotron
- 3. 18-GHz ECR ion source
- 4. Some results with heavy ion beams
 - γ -decay of high-spin isomers
 - Production of ²¹⁰Fr for electron EDM search
- 5. Summary

Research Center for Nuclear Physics, Osaka University

Cyclotron Laboratory : Nucleon, Meson, Hadron Physics

AVF cyclotron with K=0.14 GeV and Ring cyclotron with K=0.4 GeV Polarized p,d & light heavy ion with Ep=0.01 \sim 0.4 GeV , E/A=0.01 \sim 0.1 GeV

Laser Electron Photon Laboratory : Quark Nuclear Physics 1 ~ 3.5 GeV Polarized Photon Beams by Back Scattering of Laser Photons (2 ~ 6 eV) from 8 GeV electrons at Spring-8

West Harima, pring8, Hyogo Suita, Osaka Tentsuji-tunnel in Ohto, Nara

Chio Cosmo Observatory : Lepton Nuclear Physics L'inderground laboratory with low background (500 m depth, 10 Bq/m³ Rn & 4*10⁻³/m²/s cosmic μ Double b-decay, Dark matter search, etc.

RCNP Cyclotron Facility

Operating statistics

Operating statistics in 2007

RCNP K140 AVF Cyclotron

: 3.3 m

: 1.6 T

: 16 sets

: 3 ~ 5 sets

: 400 tons

: 20.6 cm ~ 34.7 cm

<u>Magnet</u> •Pole diameter •Pole gap •Averaged field •Trim coils •Valley coils •Weight

Acceleration system

Dee : Single 180 degrees type
Resonator : Moving short
Frequency : 6 ~ 18 MHz
Max. acceleration voltage : 80 kV
Extraction system: Electrostatic deflector
FT system (k=5,7,9)

<u>Ion Sources</u> •External ion source

: Atomic beam type polarized ion source, ECR ion source 18 GHz SCECR ion source

RCNP K=400 Ring Cyclotron

Magnet

 Sector magnets 	: 6
•Pole gap	: 6
•Maximum magnetic field	: 1
•Trim coils	: 36
 Injection radius 	: 2
•Extraction radius	: 4
•Weight	: 22

Acceleration system
•Single gap type
•Frequency
•Max. acceleration voltage
•RF power

: 6 sets : 6 cm : 1.75 T : 36 sets : 2 m : 4 m

- : 2200 tons
- : 3 sets : 30 ~ 52 MHz : 500 kV

: 250 kW/cavity

Flat-top cavity •Single gap type •Frequency

: 1 set : 90 ~ 156 MHz

World first FT system operating at variable frequencies

Energy (MeV)

RCNP AVF

Voltage Waveform of Fundamental and FT acceleration Using 3rd, 5th, 7th and 9th Harmonic Frequencies

FT system for the AVF cyclotron

Modification of the Dee Electrode

Dee Voltage Pickup

Dee-voltage pickup electrode

facing the Dee electorode, placed near the acceleration gap, used for regulation of RF system.

Example of the pickup voltage waveform

87MeV 4He2+ (400MeV @Ring) $f_1 = 10.144$ MHz $f_5 = 50.720$ MHz

18 GHz Superconducting ECR Ion Source

Highly charged heavy ions

A variety of heavy ions at high intensity

Plasma Chamber

Φ**80x380L**、1800cm³

Plasma Chamber: Al liner of 1 mm in thickness inside of plasma chamber

~1T on the chamber wall

Ion Currents (eµA)

 $* \rightarrow$ Optimized for these ions

	2+	3+	4+	5+	6+	7+	RF
¹¹ B (⁴He) ※1	1.3	4.1	9.3	* 8.2			400W
¹² C (CH4) (⁴ He)			410	* 115			500W
¹⁵ N (⁴ He)		167	477	* 725	117		500W
¹⁶ O (⁴ He)	10	178		* 779	517	27	500W
¹⁸ O (⁴ He)		88	235	475	* 673	39	500W
	11+	12+	13+	14+			
⁴⁰ Ar (¹⁶ O)	* 188	70	17	3			500W
	20+	21+	22+	23+	24+	25+	
⁸⁶ Kr (¹⁶ O)	32	26	21	*13	8.1	4.5	600W
	28+	29+	30+	31+	32+	33+	
¹³⁶ Xe (¹⁶ O)	11.3	10.6	8.8	6.2	* 4.2	2.3	770W
	comparabl	e ion bean	ns from NI	EOMAFIOS	6		
			4+	5+	6+	7+	
¹⁴ N			110	65	6		
¹⁶ O			80	30	10	0.2	

 $\times 1$ MIVOC Method with o-carborane (C₂B₁₀H₁₂)

- Bean intensity is increased by one order of magnitude compared to the existing NEOMAFIOS.
- Highly charged ions become available for heavier elements.

Bypass & diagnostic beam line

Object point

Emittance monitor: Profile measurement

安

Emittance monitor: Slit

Vertical Imະອາບອ່ອງint

Bypass & diagnostic beam line

安

EN (Exotic Nucleus) beam line

RCNP Ge array

14 Ge det.total efficiency1.9 % at 1.3 MeV

14 Ge + 6 BGOACS total efficiency 1.0 % at 1.3 MeV

Ge det. : Dep. of Phys. & RCNP Osaka Univ., Dep. of Phys. Tohoku Univ., SUNY

search for high-spin shape isomers in *N*=83 isotones ¹⁷N **RI beam** fusion reaction

Gamma-rays by secondary fusion reaction were observed.

Oven target and surface ionizer to produce ²¹⁰Fr for e-EDM measurement

 ϕ 50 μ m Au

Thermocouple

Surface ionizer

2

Spectrum of α -particles (log scale)

Summary

- The RCNP cyclotron facility provides a variety of ion beams in a wide energy region.
- Developments are in progress to increase research opportunities.
 - FT system
 - SCECR ion source
 - Optimization of the central region to improve the transmission through the AVF cyclotron.

Thank you for your attention