Laser accelerated ions and their potential for therapy accelerators

I. Hofmann, GSI Accelerator Department HIAT09, Venezia, June 8-12, 2009

- . Introduction to p driver parameters
- 2. Proton therapy accelerators
- 3. Beam quality source-collimation-accelerator
 - PHELIX-GSI experiment
 - scaling laws
- 4. Impact on accelerator scenarios
- 5. preliminary conclusions

<u>co-workers:</u> A. Orzhekhovskaya and S. Yaramyshev (GSI) M. Roth (TU Darmstadt), M. Droba (U Frankfurt)

1. Introduction to p driver parameters What are lasers competing with?

SNS Accelerator Complex

Injector Chain: New Proton Linac for FAIR at GSI

<u>Crossed-bar</u><u>H</u>-Structure

Beam Energy	70 MeV
Beam Current	70 mA
Protons / Pulse	7.10 ¹²
Pulse Length	36 µs
Repetition Rate	4 Hz
Rf Frequency	352 MHz

(Univ. Frankfurt U. Ratzinger)

Heidelberg Ion Therapy Facility (HIT - accelerator built by GSI, fully operational end of 2009)

Summary on Proton Drivers

What can conventional proton accelerators achieve? (some examples)

	MeV	p/sec	p/ spill or micropulse
SNS Oakridge (Spallation Neutron Source):	1000	6x10 ¹⁵	2x10 ⁹ /10ns
FAIR p driver linac (\rightarrow antiproton facility) :	70	~ 10 ¹³	2x10 ⁹ /10ns
Proton therapy (typical):	~ 250	~ 10 ¹⁰	~ 5x10 ¹⁰ / 10s spill ~ 5x10 ⁷ / voxel (100 Hz)

 → Laser p/ion acceleration may be competitive in the area of therapy SNS FAIR HIT 5 Hz PW laser system
 beam power: 1 MW 100 W 0.2 W 150 W (in photons)
 → efficiency of "photons into usable protons/ions" crucial !! (example: in GSI-PHELIX experiment ~ 3x10⁻⁵)

2. Proton/Ion Therapy Accelerators

two (theoretical) options:

laser + post accelerator - laser to full energy

A. Laser acceleration replacing "injector linac" + conventional post-accelerator (linac/circular)

Summary on issues in proton therapy following Linz & Alonso PRSTAB10, 094801 (2007):

	Conventional		
(Cyclotr			
Beam Energy	200 – 250 MeV	in theory possible	
Energy variability	"+" in synchrotron	? demanding	
$\Delta E/E$	~ 0.1%	? demanding	
Intensity	10 ¹⁰ /sec	10 ⁹ /10 ⁸ at 10/100 Hz	
Precision for scanning	"+" in synchrotrons	? large ∆p/p	

1.

2.

3.

4.

5.

Linz & Alonso didn't quantify their highly critical arguments against laser acceleration!

3. Beam quality source-collimation-accelerator

- 1. The production phase space is extremely small consequence of small μ m size focal spot and <ps time duration often "sold" as attractive feature of laser acceleration
- 2. Can we take advantage of the extremely small production phase space?
- No, it won't survive collection and following transport!
 "Single particle" effects degrading quality: chromatic aberration (second order effect):

δx ~ x' δp/p

GSI-PHELIX Experiment (K. Witte et al., M. Roth et al.)

used as reference case here

In 2008 demonstrated first time:

- 170 TW power
- 700 fs pulse length (120 J)
- novel copper focusing parabola
- spot size 12 X 17 µm (FWH
- Intensity: ~ 4 x 10¹⁹ W/cm²

EXPERIMENT: Laser Ion Acceleration (TUD - GSI)

Results of the first PHELIX experiment on laser proton acceleration

Chromatic effect blows up integrated emittance from bunch head to tail – common collimation problem solenoid focusing: $\Delta f/f \sim 2 \Delta p/p$

Detailed tracking simulation with DYNAMION* code (quadrupole channel)

- reduced cone angle from 22⁰ to 2.5⁰
- confirms chromatic effect
- shows also nonparaxial effect

* S. Yaramishev et. al.

— G S İ.

DYNAMION: comparison for quadrupole and solenoid collimators / cone angle of 2.5⁰

"real" solenoid field

solenoid

۲

- requires large field of 16 T
 - symmetric focusing avoids large excursions as in quadrupoles
- larger distance source-solenoid reduces field, but increases chromatic effect → approaching quadrupole

Combined chromatic and space charge effects

production cone angle 5^o (86 mrad) $\Delta E/E = \pm -0.04$ extrapolate to 10^o at 30 mA $\rightarrow \epsilon \sim 40 \pi$ mm mrad with 2x10⁹ p (reference bunch)

Applied to synchrotron injection at 10 MeV

Parameters: laser injector – full laser scenario

					250 MeV		Laser:	
lon	N _{bunch}	N _{ring}	∆Q _{inc} (space charge)	h	\mathcal{E}_{final} $\pi mmmrad$ (estimated)	$\delta p/p_{final}$ (estimated)		
р	2x10 ⁹	5x10 ¹⁰	0.1 (1 s!!!)	25	~10 assume 10° cone	~0.001	~10 Hz ~PW	5Hz / 30J 30 fs on market
C ⁶⁺	6x10 ⁸	1.5x10 ¹⁰ every 10 s	0.1				~10 Hz ~PW	
full laser:	N _{batch}	N _{fraction}						
р	5x10 ⁷	5x10 ¹⁰ for 3D scanning in 10 s			<10 ? assume 2.5° cone	<0.001? linac bunch rotator: ~ 2-5 m length	100 Hz	>PW?

Conclusions

- As of today laser acceleration has a <u>theoretical</u> potential to compete with conventional drivers for therapy
- extremely high initial beam quality lost after collector → small "usable" fraction of total particle yield (PHELIX: "use" 3x10⁻³ of proton and 3x10⁻⁵ of photon yield)
- "laser injector" into synchrotron
 - should be ok (based on PHELIX data)
 - 10 Hz Petawatt laser in reach
 - hard to compete with linac technology !!
- "full energy laser" scenario lacks data
 - small cones (~2-3°), smaller production $\Delta E/E$ (100% \rightarrow 10-20%)
 - >100 Hz laser systems, nm foils (problems?)
 - reproducibility, precision unknown
- New accelerator technologies take time!!