HIAT 2009

STATUS REPORT and FUTURE DEVELOPMENT of FLNR JINR HEAVY ION ACCELERATOR COMPLEX

G.Gulbekian, B.Gikal, N.Kazarinov, I.Kalagin

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russian Federation 2009

FLEROVLAB ACCELERATORS

View from Above on Accelerator Placement

U400 Cyclotron Buncher System

U400 cyclotron operation time in 1997-2009

Years

CHART of the NUCLIDES

Comparative parameters of U400 and U400R

Parameters	U400	U400R
A/z range	5÷12	4÷12
Magnetic field	1.93÷2.1 T	0.8÷1.8 T
K factor	530÷625	100÷500
RF modes	2	2, 3, 4, 5, 6
Injection potential	10÷20 kV	10÷50 kV
Ion energy range	3÷20 MeV/n	0.8÷27 MeV/n
Number of sectors	4	4
Number of dees	2	2
Flat – top system	-	+
Beam extraction	stripping	Stripping, deflector
Power consuption	~1 MW	~0.4 MW

Parameters of U400 and U400R typical ion

U400		U400R (expected)			
Ion	Ion energy [MeV/u]	Output intensity	Ion	Ion energy [MeV/u]	Output intensity
⁴ He ¹⁺	-	-	⁴ He ¹⁺	6.4 ÷ 27	23 pµA **
⁶ He ¹⁺	11	3·10 ⁷ pps	⁶ He ¹⁺	2.8 ÷ 14.4	10 ⁸ pps
⁸ He ¹⁺	7.9	-	⁸ He ¹⁺	1.6 ÷ 8	10 ⁵ pps
¹⁶ O ²⁺	5.7; 7.9	5 рµА	¹⁶ O ²⁺	1.6 ÷ 8	19.5 pµA **
$^{18}O^{3+}$	7.8; 10.5; 15.8	4.4 рµА	¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµA **
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 рµА	⁴⁰ Ar ⁴⁺	1 ÷ 5.1	10 pµA
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 рµА	⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 pµA
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	1 pµA	⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 pµA
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 pµA	⁵⁰ Ti ¹⁰⁺	4.1 ÷ 21	1 pµA
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA	⁵⁸ Fe ⁷⁺	1.2 ÷ 7.5	1 pµA
⁸⁴ Kr ⁸⁺	3.1; 4.4 *	0.3 рµА	⁸⁴ Kr ⁷⁺	0.8 ÷ 3.5	1.4 pµA
$^{136}Xe^{14+}$	3.3; 4.6; 6.9 *	0.08 pµA	¹³² Xe ¹¹⁺	0.8 ÷ 3.5	0.9 pµA

Scheme of the beam extraction in two selected directions

Plan View of the U400M Hall

U400ML Ion beam extraction by charge exchange method

IC-100 cyclic implanter

11

FLEROVLAB ACCELERATORS

View from Above on Accelerator Placement

U400M Cyclotron with DRIBs Complex

DRIBs - Project

Transformation of the primary beam into a low energy radioactive ion beam

SUPERCONDUCTING ECR ION SOURCE at IC-100

DRIBS-I ECR Ion Source

58

NEW FLNR ACCELERATOR

In order to improve efficiency of the experiments for the next 7 years it is necessary to obtain the accelerated ion beams with following parameters.

Energy $4\div 8 \text{ MeV/n}$ Masses $10\div 100$ Intensity (up to 48Ca) $10 \text{ p}\mu\text{A}$ Beam emittance less $30 \pi \text{ mm·mrad}$ Efficiency of beam transfer >50%ECR frequency $18\div 28 \text{ GHz}$ Under consideration here are two variants now: SClinac or specialized cyclotron.

Variant 1 – SC LINAC

The proposed superconducting linac structure includes RFQ and 26 QuaterWave Resonators (QWR). The total length is near 46 m, total power consumption is 350 kW, and average accelerating gradient (along all QWR) is near 1.5 MV/m.

The efficiency of capture versus injecting beam current and bunchers

DC200. Parameters and Goals

	DC200 Parameter	Goals
1.	High injecting beam energy (up to 100 kV)	Shift of space charge limits for factor 30
2.	High gap in the center	Space for long spiral inflector
3.	Low magnetic field	High starting radius. High turns separation. Low deflector voltage
4.	High acceleration rate	High turns separation.
5.	Flat-top system	High capture. Single turn extraction. Beam quality.

DC200. Main Parameters

Injecting beam potential	Up to 100 kV
A/Z range	4÷7
Magnetic field level	0.65÷1.15 T
K factor	200
Gap between plugs	250 mm
Valley/hill gap	350/240 mm/mm
Magnet weight	470 t
Magnet power	170 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV
Beam turns separation	10 mm
Radial beam bunch size	3 mm
Efficiency of beam transferring	60%
Total accelerating potential	up to ~ 40 MV

3D design of DC200 Cyclotron

DC200 Working Diagram

Thanks for your attention!