# The GSI UNILAC Upgrade Program for FAIR Requirements



Member of Helmholtz Community



**Present accelerators** 

**Accelerated Ions: p to U** 



# FAIR Beam Data



Key technologies

Cooled beams

•Fast ramped super conducting magnets

#### **Primary beams**

10<sup>12</sup>/s; 1.5-2 GeV/u; <sup>238</sup>U<sup>28+</sup> 10<sup>11</sup>/s <sup>238</sup>U<sup>73+</sup> 100-1000 fold intensities 4x10<sup>13</sup>/s 30 GeV Protons

#### Sekundary beams

wide range of radioactive beams up to 1.5 - 2 GeV/u; intensity gain of factor 10 000 Antiprotons 3 - 30 GeV

Storage and cooler rings

Radioactive beams

e – A(RIB) Collider

10<sup>11</sup> stored and cooled 3 - 15 GeV pbars

# FAIR beam intensity and beam quality requirements

SIS space charge limit is reached by four 100 µs injections with each fifteen Multiturns. <u>Uranium reference beam intensities:</u>

|                            | HSI<br>entrance         | HSI<br>exit             | Alvarez<br>entrance      | SIS 18<br>injection          |
|----------------------------|-------------------------|-------------------------|--------------------------|------------------------------|
| ION SPECIES                | $^{238}\mathrm{U}^{4+}$ | $^{238}\mathrm{U}^{4+}$ | $^{238}\mathrm{U}^{28+}$ | $^{238}\mathrm{U}^{28+}$     |
| El. Current [mA]           | 20                      | 18                      | 15                       | 15                           |
| Part. per 100µs<br>pulse   | $3 \cdot 10^{12}$       | $2.4 \cdot 10^{12}$     | $3.2 \cdot 10^{11}$      | <b>3.2</b> ·10 <sup>11</sup> |
| Energy [MeV/u]             | 0.0022                  | 1.4                     | 1.4                      | 11.4                         |
| $\Delta W/W$               | -                       | $\pm 4.10^{-3}$         | $\pm 2.10^{-3}$          | $\pm 2.10^{-3}$              |
| ε <sub>n,x</sub> [mm mrad] | 0.3                     | 0.5                     | 0.75                     | 1.0                          |
| ε <sub>n,y</sub> [mm mrad] | 0.3                     | 0.5                     | 0.75                     | 2.5                          |

# **The UNILAC**



# Example of three beam pulse-to-pulse operation



## **Transverse emittance growth along the UNIL**



# **Space charge forces along the UNILA**



# **MUCIS & MEVVA- Ion Sources**



MUCIS (<u>M</u>ulti <u>C</u>usp <u>I</u>on <u>S</u>ource) (Emission Current Density ≤150 mA/cm²)



MEVVA (<u>ME</u>tal <u>V</u>acuum <u>V</u>apor <u>A</u>rc Ion Source) (Emission Current Density ≤150 mA/cm<sup>2</sup>)

|       |                                | HSI-INJECTION  | DESIGN         |
|-------|--------------------------------|----------------|----------------|
|       | $H_3^+$                        | 1.0 mA         | 1.0 mA         |
|       | $D_{3}^{+}$                    | 2.0 mA         | 2.0 mA         |
|       | $^{12}C^{+}$                   | 7.0 mA         | 4.0 mA         |
|       | ${}^{14}N^{+}$                 | 4.0 mA         | 4.8 mA         |
| CIS   | $^{18}O^{+}$                   | 5.0 mA         | 6.0 mA         |
| MUCIS | $^{20}$ Ne <sup>+</sup>        | 5.5 mA         | 6.8 mA         |
|       | $\mathrm{CO}^+$                | 6.0 mA         | 10.1 mA        |
|       | <sup>40</sup> Ar <sup>1+</sup> | <b>19.0 mA</b> | 13.5 mA        |
|       | $^{86}$ Kr <sup>2+</sup>       | 8.0 mA         | 14.5 mA        |
|       | $^{129}$ Xe <sup>2+</sup>      | 0.75 mA        | 21.2 mA        |
|       | $^{12}C^{+}$                   | 5.5 mA         | 4.0 mA         |
|       | $^{48}{ m Ti}^{1+}$            | 3.0 mA         | 16.1 mA        |
|       | $^{48}{ m Ti}^{2+}$            | 20.0 mA        | 7.5 mA         |
| N N   | $^{48}{ m Ti}^{3+}$            | 20.0 mA        | 5.4 mA         |
| MEVVA | $^{52}Cr^{1+}$                 | 6.0 mA         | 17.5 mA        |
|       | <sup>58</sup> Ni <sup>1+</sup> | 10.0 mA        | 19.5 mA        |
|       | $^{92}Mo^{2+}$                 | 6.0 mA         | 15.5 mA        |
|       | $^{238}\mathrm{U}^{4+}$        | 16.0 mA        | <b>20.0 mA</b> |



#### **Status of Uranium intensity in 2003**



## **Unilac measures since 2003**

- Improvement of the Mevva high current ion source
- RFQ-Upgrade: exchange of RFQ minivanes, modified IRM
- Increased stripper gas density
- Matching to the Alvarez DTL under space charge conditions
- Increase of Alvarez DTL transverse phase advance
- High current beam diagnostics, measurement of long. emittance
- Machine investigations: frontend, Alvarez matching, transfer line long. and transv. emittance measurements
- New charge state separator in the transfer channel to SIS18 for U73+



# **RFQ-Upgrade: Modified Input Radial Matcher**

|                                    |                  | <u>NP2= 9</u>     |
|------------------------------------|------------------|-------------------|
| <u>NP1= 1</u><br>80.00 mm (Horiz)  | 30.0 Deg (Long.) | <u>NP2= 9</u>     |
| 00.00 mm (10112)                   | 50.0 Deg (hong.) |                   |
|                                    |                  | Matching 1999     |
|                                    |                  | matering root     |
|                                    |                  |                   |
|                                    |                  |                   |
|                                    |                  |                   |
|                                    | 1                |                   |
|                                    | ±                |                   |
|                                    |                  |                   |
|                                    |                  |                   |
|                                    |                  |                   |
|                                    |                  |                   |
| 80.00 mm (Vert)                    |                  | Length= 2722.65mm |
|                                    |                  |                   |
| 11                                 |                  | <u>NP2= 9</u>     |
|                                    |                  | NP2= 9            |
| 80.00 mm (Horiz)                   | 30.0 Deg (Long.) | NP2= 9            |
| ₩ <u>₽1= 1</u><br>80.00 mm (Horiz) | 30.0 Deg (Long.) |                   |
|                                    | 30.0 Deg (Long.) | Matching 2004     |
|                                    | 30.0 Deg (Long.) |                   |
|                                    | 30.0 Deg (Long.) |                   |
|                                    | 30.0 Deg (Long.) |                   |
|                                    |                  | Matching 2004     |
|                                    | 30.0 Deg (Long.) |                   |
|                                    |                  | Matching 2004     |



# LEBT emittance measurements with U<sup>4+</sup> beam of 8 em/



2006: Mevva ion source: 37 emA of U<sup>4+</sup> and 18 emA of U<sup>3+</sup> beam

# **RFQ-upgrade: new RFQ-rods in 2004**



Two reasons: improved input matching (Stepan Yaramishev) high power consumption , dark currents



# HSI RFQ commissioning (7/2004)



# GSI Nitrogen gas stripper section at 1.4 MeV/u



## Increase of pressure and pumping capacity



#### **Charge state spectrum of an Uranium beam**

#### 14 % of particles within charge state 28+



# **Alvarez-Matching**

Periodicity FDDF, interrupted by the intertank sections

Emittance Measurement before DTL, 3.5 emA U<sup>28+</sup>

**Betafunction (before Matching)** 

Alvarez DTL-Transmission: 92 % (before) 99 %. (after)

**Betafunction (afterMatching)** 



## **Experimental Set-up for Alvarez DTL matching**



- set beam current to 7.1 mA of <sup>40</sup>Ar<sup>10+</sup> (equiv. to FAIR design of 15 mA of <sup>238</sup>U<sup>28+</sup>)
- measure hor., ver. emittance and long. rms-bunch length at DTL entrance
- set DTL transverse phase advance to values from  $35^{\circ}$  to  $90^{\circ}$ 
  - tune depression varied from 21% (90°) to 43% (35°)
- measure transmission, hor., and ver. rms-emittance at DTL exit

The GSI UNILAC Upgrade Program for FAIR Requirements, L. Dahl, HIAT, Venice, 12.6.2009

#### **Transverse emittance growth in Alvarez DTL**

<sup>40</sup>Ar<sup>10+</sup> beam, 7.1 emA, equivalent to 15 emA U<sup>28+</sup> beam



# New Power Supplies for the Alvarez dc-Magnets

- The achieved ratio current / rms-emittance at DTL exit is too low for FAIR
- Design: 15.5 mA / 0.25 μm; Achieved: 4.4 mA / 0.43 μm
- One measure of improvement → reduction of emittance growth along DTL
- Exp. and simulation: possible by increasing DTL quad strengths



#### New charge state separator behind foil stripper



64

#### **Beam dynamics**



# **Foil stripping modes**





foil deposit



quadrupole



# **Commissioning with Uranium beam**



# Carbon foils 200 – 600 µg/cm<sup>2</sup>







# Fish eye view of the charge state separator





#### **Present Uranium beam intensity**



# Normalized emittances along the UNILAC



# Front-end upgrade (2009-2011)

Test bench for the investigation of high current ion sources and acceleration gap.

Optimization of extraction and gap geometry for highest beam brilliance.

New RFQ minivane design for enlarged acceptance and higher beam brilliance.

Dedicated high intensity beam LEBT (Compact LEBT) to transport 37 emA of U4+ beam into the RFQ.

# **Old and new design of RFQ minivanes**

|                                         | New Design | Existing<br>Design |
|-----------------------------------------|------------|--------------------|
| Voltage, kV                             | 155.0      | 125.0              |
| Average radius, cm                      | 0.6        | 0.52-0.77          |
| Electrode width, cm                     | 0.84       | 0.9-1.08           |
| Maximum field, kV/cm                    | 312.0      | 318.5              |
| Modulation                              | 1.012-1.93 | 1.012-2.09         |
| Synch. Phase, degree                    | -90 to -28 | -90 to -34         |
| Aperture, cm                            | 0.41       | 0.38               |
| Min. transverse phase<br>advance, rad   | 0.56       | 0.45               |
| Norm. transverse<br>acceptance, cm mrad | 0.086      | 0.73               |
| Output energy, MeV/u                    | 0.120      |                    |
| Electrode length, mm                    | 9208.4     |                    |

Designed by Andrej Kolomiets

## **Advantages of new RFQ minivanes**



- Higher transverse acceptance and phase advance
- New input radial matcher design → improved beam matching
- Improved beam dynamics for gentle buncher, optimized for rapid and uniform separatrix filling
- Resonant frequency shift with increased average radius and reduced electrode thickness can easily be compensated
- Beam dynamics studied with DYNAMION& PARMTEQ-M
- Beam intensity at HSI-RFQ output (18 mA of U<sup>4+</sup> ions) meets the FAIR requirement

# **Compact LEBT**

#### **Pre investigations**

- High current test bench measurements

#### **Upgrade I**

- Switching magnet with increased aperture
- Quadrupole quartet with increased apertures (proper matching to the RFQ)

#### **Upgrade II (Compact LEBT)**

sc solenoids for straight line
 injection of 37 emA of U4+ beam
 into the RFQ



# Summary

- An extended upgrade program at the UNILAC resulted in a Uranium beam intensity of up to 5.7 emA (28+) for the injection into the synchrotron SIS 18.
- High current UNILAC-upgrade measures: improved ion source performance, increase of stripper gas density, improved Alvarez-DTL-matching, increased phase advance in the DTL, compact charge state separator behind the foil stripper.
- The UNILAC-upgrade will be continued with a new front end comprising a compact LEBT, a new RFQ minivane design, and beam diagnostics devices, sufficient for the operation with megawatt heavy ion beams (until 2011). Thus the FAIR requirements will be approached.
- **BUT:** The UNILAC is in operation since 35 years. In long term perspective the substitution of the Alvarez DTL by more efficient high current heavy ion accelerators for low frequent beam pulses for FAIR injection is necessary.
- **AND:** The UNILAC experimental program should be decoupled from the FAIR injection linac by a new independent sc cw-linac up to 7.5 MeV/u.



#### **co-workers**

# LINAC group of the GSI accelerator division:

Winfried Barth Gianluigi Clemente Peter Gerhard Lars Groening Michael Kaiser Michael Maier Sascha Mickat Anna Orzhekhovskaya **Bernhard Schlitt** Hartmut Vormann Stepan Yaramishev Ludwig Dahl