Development of metal ion beams and beam transmission at JYFL

H. Koivisto, O. Tarvainen, T. Ropponen, V. Toivanen, O. Steczkiewicz and M. Savonen

Content:

- MIVOC method for the production of metal ion beams
- oven development at JYFL
- sputter development at JYFL
- beam transmission efficiency
- beam structure
- beam neutralization (space charge compensation)

JYFL 6.4 GHz ECRIS JYVÄSKYLÄN YLIOPISTO

JYFL 14 GHz ECRIS

Main source for the K-130 cyclotron

Back up for cyclotron

lon beam related R&D

Element	Method	Intensity [µA] (q/mÅ02)	Note	
В	MIVOC	235	$(C_2H_{12}B_{10})$	IVVÄSKVLÄN VLIOPISTO
С	CO ₂	195		JIVASKILAN ILIOIISIO
F	SF ₆	19	6.4 GHz	Solid ion beams at IYFL
Mg	MIVOC	12	6.4 GHz	
Al	Oven	9.5	6.4 GHz	
Si	SiH ₄	124		Ovens, MIVOC, sputter technique
S	SF ₆	22	6.4 GHz	
Cl	TiCl ₄	23	6.4 GHz	
Ca	Oven	75	CaO + Zr	
Ti	MIVOC	45	CH ₃) ₅ C ₅ Ti(CH ₃) ₃	
V	MIVOC	10	V(C ₅ H ₅) ₂	
Cr	Ind. oven	20		
Mn	Oven	22.5		
Fe	MIVOC	115	Fe(C ₅ H ₅) ₂	
Со	MIVOC	12	Co(C ₅ H ₅) ₂	
Ni	MIVOC	55	Ni(C ₅ H ₅) ₂	
Cu	Oven	7.5		
Zn	Sputter	5.5	6.4 GHz	
Sr	Oven	30	ZrO + Zr	
Y	Foil oven	5		
Zr	Sputter	12		A such as budget the state
Ru	MIVOC	9.1	$Ru(C_5H_5)_2$	
Ag	Oven	5.8	. aret.	
Au	Oven	15		

MIVOC method: Metal Ions from VOlatile Compounds

Compound including element of interest and having adequate vapor pressure has to be found!

MIVOC is very effective for some metal ion beams like iron

 used at RIKEN for studies of superheavy elements

Drawbacks:

- lack of suitable compounds

JYVÄSKYLÄN YLIOPISTO

- carbon contamination

FIG. 1. Beam intensity of Fe, Ni, Ru, and Os ions as a function of charge state.

JYFL evaporation ovens

a) Miniature oven, b) foil oven, c) induction oven

Main problem concerning the oven technique:

Surface to surface stability!

TABLE V. Maximum temperatures (°C) for surface-to-surface stability for some ceramics and refractory metals.^a

	С	w	Mo	Ta	ThO ₂	ZrO2	MgO	BeO
BeO	2300	2000	1900	1600	2100	1900	1800	
MgO	1800	2000	1600	1600	2200	2000		1800
ZrO_2	1600	1600	2200	1700	2200		2000	1900
ThO ₂	2000	2200	1900			2200	2200	2100
Al_2O_3	1300 ^b	1700 ^c	1800 ^{c,d}	1700 ^e				
BN	1900°			1500 ^e				
С		1400°	1200°	1000°				

JYFL miniature oven

JYFL inductively heated oven

- home-made control unit

Induction oven at 2000°C

Reliable tests have been carried out at 1800 - 1900°C at least for a week

Main problem: surface-to-surface reactions between crucible material and material to be evaporated!

Sputter technique

For ECRIS the method has been developed at ANL

- plasma particles are accelerated by negative voltage (≈ 1 kV)

Sputter yield

Efficiency of the method depends on the sputter yield of material

Yield = number of removed atoms/number of incident particles INPUT:

- Operation very sensitive on sample position!
- radiation from plasma destroyed the sliding o-ring!
- intensity level of 10 µA with oxygen plasma at 10 kV

Element	Yield	Element	Yield
Ag	3.4	Ni	1.5
Al	1.2	Os	0.9
Au	2.8	Pd	(2.4)
Be	0.8	Pt	1.6
С	0.2	Re	(0.9)
Co	1.4	Rh	1.5
Cr	1.3	Ru	(1.3)
Cu	2.3	Si	0.5
Fe	1.3	Та	0.6
Ge	1.2	Th	0.7
Hf	0.8	Ti	(0.6)
Ir	1.2	U	1
Mg	1.4	V	0.7
Mn	1.3	W	(0.6)
Mo	(0.9)	Y	0.6
Nb	0.6	Zr	(0.7)

CONTRACTOR DE LA CONTRACT

Table 2: Sputter yields for different elements

- similar results can be anticipated with some other refractory elements using sputter technique!

Problem: Asymmetric beam profiles

Beam profiles have been studied by KBr-viewers

- In 2007 it was found that the beam profile is asymmetric
- Can be due to the wrong entrance/exit angle of DJ1, which would cause different focusing properties in different planes
- will increase 2D-emittance later if solenoid focusing is used

Hollow beam structure

40 Ar 9+ / ACC 12,14 kV / max intensity at FCJ2 about 110 uA SOLJ1 98 A / SOLJ2 0 A / This is the beam shape with maximum intensity

More pronounced:

- with low acceleration voltage
- with high intensities
- with high focusing power
- for low charge states

Effect of acceleration voltage

Ar⁸⁺, 10 kV, 143 μ A, 277 π mmmrad Ar⁸⁺, 14 kV, 195 μ A, 186 π mmmrad Effect on emittance and intensity bigger than can be explained by the voltage scaling!

Effect much bigger than can be anticipated from voltage scaling!

Reason: Less hollow beam?

Charge state dependence

Ar⁸⁺, 10 kV, erms 277 π mmmrad

Ar⁹⁺, 10 kV, erms 162 π mmmrad

Location of focal point depends on the charge state: higher charge state can "explode" lower charge state if intensity high enough Indicates (possibly) that hollow beam structure is formed inside the beam line Space charge compensation effect: preliminary unpublished results!

Gas was fed into the beam line close to the focal points (N₂, Ar) Ar⁸⁺, 10 kV, 143 μ A, 1.8E-7 mbar Ar⁸⁺, 10 kV, 120 μ A, 6.2E-6 mbar

Clear optimum for brightness is found!

Indicates that hollow beam structure is formed in the beam line

Frequency tuning

In the experiment the µw-frequency was changed. Collaboration with LNS ion source group (idea by L. Celona)

Ar⁸⁺, 14.100 GHz, 91 μA Ar⁸⁺, 14.125 GHz, 94 μA Klystron + TWTA

- frequency affects the hollowness of the beam.
- with two frequency heating two rings can be seen in some cases (this cannot be produced by optics)

Summary and future plans

- MIVOC method, inductively heated oven and use of sputter technique makes possible the wide variety of metal ion beams
- the beam transport plays an important role concerning the heavy ion facilities
- the hollow beam structure decreases remarkably the transport efficiency
 - experiments have shown that it can be formed:
 - 1) Inside the plasma (frequency tuning)
 - 2) Inside the beam line (voltage and charge state effect, compensation)
 - further studies are needed for better understanding
 - ion beam quality can be improved (even in the case of highly charged ion beams) with residual gas related compensation
 - filament will be tested for beam compensation