

Progress of an accelerator mass spectrometry system on the Tsukuba 12UD Pelletron tandem accelerator

-11th International Conference on Heavy Ion Accelerator Technology - Venezia (Italy) – 8-12, June, 2009

Kimikazu SASA

<u>Tandem Accelerator Complex (UTTAC),</u> <u>University of Tsukuba, Japan</u>

Collaborators

T. Takahashi, Y. Nagashima, Y. Tosaki, K. Sueki,
Y. Yamato, N. Kinoshita, T. Amano,
UTTAC, University of Tsukuba
H. Matsumura, K. Bessho, RSC, KEK
Y. Matsushi, MALT, The University of Tokyo

Outline of presentation

Introduction

- 12UD Pelletron tandem at the University of Tsukuba

- AMS and facilities
- AMS system on the 12UD Pelletron tandem
 - Description of the Tsukuba AMS system
 - Recent progress
 - Performance of ²⁶Al, ³⁶Cl and ¹²⁹I AMS
- Summary and future plans

UTTAC

University of Tsukuba, Tandem Accelerator Complex

Proton Medical Research Center: PMRC

- 250 MeV Proton Synchrotron (2001)
 - Proton Beam Radiotherapy

Tandem Accelerator Complex: UTTAC

12UD Pelletron Tandem Accelerator (1975)
1MV Tandetron Accelerator (1987)

46.5 m

University of Tsukuba

46.5 m

Upgrade of the 12UD Pelletron tandem

2009 Divided resistor system We replaced the old corona needles with the divided resister system.

Variable terminal voltage (No shorting column)

$$V_t = 1 \sim 12 \text{ MV}$$

Accelerator Mass Spectrometry

Targets of AMS

¹⁰Be (T_{1/2}=1.36×10⁶ yr) ¹⁴C (5730 yr) ²⁶Al (7.1×10⁵ yr) ³⁶Cl (3.0×10⁵ yr) ¹²⁹I (1.57×10⁷ yr) ...

Terminal voltage: 1 - 12 MV

Beam energy (MeV)

- AMS on the 12UD Pelletron tandem
 - Description of the Tsukuba AMS system
 - Recent progress
 - Performance of ²⁶Al, ³⁶Cl and ¹²⁹I AMS

Tsukuba AMS system

Progress of th	e Tsukuba AMS system
1993-1996	Trial AMS measurement for ¹⁴ C.
1996-1998	Development of AMS system ¹⁴ C-AMS AMS ion source (original)
1999-	Mass separator beam line Development of ²⁶ Al, ³⁶ Cl-AMS Pilot beam methods (Instead of GVM control)
2002-	Development of ¹²⁹ I-AMS
2007-	³⁶ Cl AMS 9 MV→10 MV (Improved beam line) Background: ³⁶ Cl/Cl < 1 × 10 ⁻¹⁵ Repetition accuracy: ± 3 %
2009-	Upgrade of the 12UD Pelletron (Resister system) GVM terminal control system

Tsukuba AMS system

³⁶Cl-AMS by the Tsukuba AMS system

AMS Cs sputtering ion source 近近で 気 波 大 学 University of Tsukuba

Tsukuba 12UD first unit (2009)

Terminal section (Charge exchange)

Terminal section was modified to the large aperture canal (ϕ 20) in 2004.

Carbon foil for AMS: 5 mg/cm²

Mass separator beam line

KAMIUCHI

vitching magnet

deflector

8° electrostatic

45 ° magnet

^d stripper foil

2113

TOF Gas ΔE - E detector

Gas $E-\Delta E$ detector

100 MeV ³⁶Cl in the gas detector.

 $^{^{36}}Cl/Cl=1.60 \times 10^{-12}$

- -Full stripping technique
- Pilot beam: ²⁶MgO⁻
- Beam current of AlO⁻ from Al_2O_3 sample : ~1.5 mA
- ²⁶Al is very clearly separated from ²⁶Mg.
 Background of the ²⁶Al-AMS: <1×10⁻¹⁵.

<u>A pilot beam method</u> is used to stabilize the terminal voltage.

²⁶Al-AMS

Target material	V _T	Injection ion	Pilot beam	Detection ion	Particle energy	Back- ground
$Al_2O_3 + {}^{26}MgO_2 + Ag$	10.2 MV	²⁶ AlO ⁻	²⁶ MgO ⁻	²⁶ Al ¹³⁺	78 MeV	$< 1 \times 10^{-15}$

³⁶Cl-AMS

Target material	V _T	Injection ion	Pilot beam	Detection ion	Particle energy	Back- ground
AgC1+C ₆₀	10 MV	³⁶ C1 ⁻	${}^{12}C_{3}^{-}$	³⁶ C1 ¹⁴⁺	100 MeV	<1 × 10 ⁻¹⁵

¹²⁹I-AMS

Target material	V _T	Injection ion	Pilot beam	Detection ion	Particle energy	Back- ground
AgI+MoO ₂ +Nb	9.7 MV	¹²⁹ I-	⁹⁷ MoO ₂ ⁻	¹²⁹ I ²⁶⁺	126 MeV	< 1 × 10 ⁻¹³

Applications by the Tsukuba AMS system

Soil

sediment

Biological sample

Human hair

> Mainly for earth and environmental sciences.

Nuclear safety research Atomic bomb, neutron fluence

Hiroshima A-bomb sample

Soil

Rock meteorite

Limestone

Meteorite

Groundwater, rain,

Rain water

ice

Ice core

Summary and future plans

 ●12UD Pelletron tandem at the University of Tsukuba We have upgraded the 12UD Pelletron tandem.
 LEBT, divided resister system, terminal stripper. The beam time for AMS research has increased to about 42% of the total operation time.

•Tsukuba AMS system

We are able to measure long-lived radioisotopes of ²⁶Al, ³⁶Cl and ¹²⁹I by employing a molecular pilot beam method that stabilize the terminal voltage with 0.02% accuracy. Main research fields are earth and environmental sciences.

Future plans

- •GVM control system
- •New injection beam line (MC-SNICS)

Thank you for your kind attention.

