

HIAT09 Venezia, June 8-12, 2009

DEVELOPMENT OF HEAVY ION ACCELERATOR AND ASSOCIATED SYSTEMS

D. Kanjilal Inter-University Accelerator Centre (IUAC) New Delhi 110067

15UD Pelletron Accelerator at IUAC

Special Features: 1. Off-set QP in Terminal

- 2. Earthquake Protection
- 3. Compressed Geometry Tubes

Off-set quadrupoles after strippers in terminal D.Kanjilal et al, Nucl. Instr. Meth. A 328 (1993) 97

NEW SF₆ CHILLER FOR ACCELERATOR :

• The SF_6 chiller, installed inside Pelletron tank, is meant for cooling SF_6 gas inside the tank during recirculation.

•A new Chiller has been designed, fabricated, tested and installed to replace.

• Water circulates inside tubes with 8 passes .

•The new heat exchanger is installed outside Pelletron tank.

IUAC Proposed capacitance-loaded QWR resonator

Work started in early 90s. ANL Collaboration started in 1992.

IUAC Quarter Wave Resonator (QWR)

First Indigenous QW Resonator of IUAC (v/c=0.08)

Performance of one of the indigenously built QWRs at 4.5 K

Electron Beam welding facility

60 kV, 15 kW, CNC controlled. Chamber size:2.5 m x 1.0 m x 1.0 m

Before welding using EBW

Surface Preparation Laboratory

Acid Fume Hood

• EP

- High pres. rinsing
- Assembly in a clean room

High Pressure rinsing system

In-House Fabrication of Resonator

High Vacuum Furnace

Max Temp. 1200 C @ 5.0 x 10⁻⁷ torr

Hot Zone – \$\$\overline{600mm}\$ x 1000mm

Indigenous Resonator Fabrication

Bare niobium QWRs ready for the outer stainless steel jacketing

Niobium Slow tuner bellows

Punctured upper cap on the central conductor of the coaxial line.

Transition Flanges: Welded bellows replaced by formed bellows

Old and new Coupler

Old

New

Old and new slow tuners

Schematic of old top flange & new dome (HAT) on top of QWR

Damping of Micro-harmonics

Cross-sectional view of a resonator along with SS-balls used for damping

S. Ghosh et al, Phys. Rev. ST Accel. Beams 10, (2007) 42002

Eight QWRs, SC Solenoid, etc of the first Linac module

RF Amplifier and Control system

Power supplies for beam transport systems

Superbuncher in the beam line (FWHM~170 ps)

LINAC Module ready for delivering beams

Rebuncher having two QWRs (350-400 ps)

S. Ghosh et al, Phys. Rev. ST Accel. Beams, 12, Phys. Rev. ST Accel. Beams 12, (2009) 40101

LINAC Beam Run, April-May '09

LINAC Beam Run, April-May '09

Beam	Energy from Pelletron (MeV)	Energy from LINAC(MeV)	Total Energy (MeV)	
12 C, 6+	87	87 19.2		
16 O, 8+	100	20.02	120	
		18	118	
	10.25		110.25	
18 O, 8+	100	20.026	120	
		16	116	
		12.25	112.25	
		8	108	
19 F, 9+	115	25.8	140.8	
		22.2	137.8	
28 Si, 11+	130	37.5	167.5	
48 Ti, 14+	162	51	213	
		36	198	
107 Ag, 21+	225	75	300	

Energy gain through LINAC for different beams

Schematic of the proposed high current injector

Maximum operating current	181 A
Maximum radial field	1.4 T
I _c @ 77 K,0B	110 A

Field vectors on the yoke cross section

Axial field measurements

D. Kanjilal et al, Rev. Sci. Instr. 77 (2005)1

HTS- ECRIS PKDELIS with large pole-gap (80mm) Analyzing magnet (air-cooled)

Beam	Q	Quoted Current	Obtained Current	
12 C	2	2 mA	2.280 mA	
16 O	2	2 mA	2.006 mA	
20 Ne	2	2 mA	2.111 mA	
20 Ne	3	1 mA	1.533 mA	
40 Ar	4	1 mA	1.023 mA	
40 Ar	8	600 µA	725 μΑ	
129 Xe	14	150 µA	157 μΑ	
129 Xe	21	20 µA	27 μΑ	
180 Ta	20	30µA	65 µA	
180 Ta	25	25 μΑ	26 μΑ	
197 Au	21	15 μΑ	28 µA	
197 Au	28	10 µA	19 µA	
208 Pb	21	15 μΑ 66 μΑ		
208 Pb	28	12 µA	18 µA	

Ar $^{+8}$ @ 14.5 GHz = 540 μ A Ar $^{+8}$ @ 18 GHz = 725 μ A

&

Ar $^{+8}$ (405 μA) @ 765 W Ar $^{+8}$ (317 μA) @ 331W

D. Kanjilal et al, Rev. Sci. Instr. 77

HYPERNANOGAN 🛤

B_{axial}= 1.8 T B_{radial} = 1.37 T Max required power = 20 kW ! Water cooling 200 l/h !

Bead pull test of RFQ

Prototype DTL cavity (dia = 85 cm, length =38 cm).

Bead pull test plot

Collaboration

Niobium Single Spoke Resonators (The diameter ~ 500 mm.) operating at 325 MHz, β =0.22, for the Proton Driver Linac of High Intensity Neutrino Source at FNAL, USA .

Collaboration

Dies and Fabrication of Half Spoke and End Wall

Collaboration

Control Room for 15UD Pelletron and Linac

Conclusion

Required infra-structures and facilities for indigenous development, fabrication and tests of various ion accelerators and associated components are developed.

HTS-ECR ion source on elevated (kV) platform followed by RFQ and DTL will be alternate injector of linac. HTS ECRIS has been operational for more than 27000 hours.

Technology of niobium QWR has been developed successfully.

The first LINAC module has been completed and used to deliver beam for scheduled experiments.

LHe: Based on Expansion engine. 150 l/h, 600W at 4.5K From CCI, USA.

(LN2 for shield, distribution line pre-cooling of He refrigerator: 5000W @80K)

BEAMS extra	acted from PKDELI	S
Ion	RF power	Beam current
	(Watts)	
20Ne 2+	391	2 mA
40Ar 8+	521	732 mA
129Xe 14 +	615	158 mA
129Xe 21 +	600	44 mA
181Ta 20 +	426	65 mA
181Ta 25+	476	27 mA
197Au 21 +	786	38 mA
197Au 27 +	873	20 mA
208Pb 21 +	1200	99 mA
208Pb 28+	776	20 mA

QWR#, ST#	Decay time (c.c.) at low field	Max Field achieved HPP- conditioning (Volts with 50 ohm term at scope)	No. of breakdowns observed	Duration of HPP condi- tioning	V _{in} ⁰ / V _{sig} ⁰	Electric field (MV/m) achieved @ 6 W
R11(11,13)	0.48	1.18	2-3	~ 1 hour	3.804/ -6.668	2.8 @ 3.6 W
R12(8,_)	0.550	4.1	7	~ 1 hour	3.865/ 3.368	3.4
R13(10,10)	1.4	2.016	Nil	~ 1 hour	3.759/ -4.539	4.2
R14(2,7)	0.846	2.166	Nil	1 hour 10 mins	3.868/ -2.723	3.5
R15(empty)						
R16(1,_)	0.520	2.15	Nil	1 hour 30 mins	3.858/ -1.704	3.015 @ 4 W
R17(12,2)	0.450	2.1	Nil	~ 1 hour	3.653/ -2.644	3.7
R18(3,4)	0.750	4.93	10-12	1 hour 30 mins.	3.755/ 2.586	4.1
SB (4,_)	X	0.946	4-2	¹ /2 hour	3.192/ -4.944	Not measured
RB1(IFR1,_)	0.95	2.033	Nil	2 hours	3.687/ -2.81	3.6
RB2(IFR2,_)	0.61	2.433	Nil	1 hour	3.731/ -1.420	3.73

Table 1. Details of HPP conditioning, decay time, calibration values and acceleration fields

Increase in beam energy at various configurations

Comparison of frequency jitter with and without damping balls

Modified Slow Tuner

Field mapping in horizontal & Vertical Plane

Field mapping in horizontal & Vertical Plane

